ﻻ يوجد ملخص باللغة العربية
In the last few years, open-domain question answering (ODQA) has advanced rapidly due to the development of deep learning techniques and the availability of large-scale QA datasets. However, the current datasets are essentially designed for synchronic document collections (e.g., Wikipedia). Temporal news collections such as long-term news archives spanning several decades, are rarely used in training the models despite they are quite valuable for our society. In order to foster the research in the field of ODQA on such historical collections, we present ArchivalQA, a large question answering dataset consisting of 1,067,056 question-answer pairs which is designed for temporal news QA. In addition, we create four subparts of our dataset based on the question difficulty levels and the containment of temporal expressions, which we believe could be useful for training or testing ODQA systems characterized by different strengths and abilities. The novel QA dataset-constructing framework that we introduce can be also applied to create datasets over other types of collections.
Open domain question answering (OpenQA) tasks have been recently attracting more and more attention from the natural language processing (NLP) community. In this work, we present the first free-form multiple-choice OpenQA dataset for solving medical
To date, most of recent work under the retrieval-reader framework for open-domain QA focuses on either extractive or generative reader exclusively. In this paper, we study a hybrid approach for leveraging the strengths of both models. We apply novel
In open question answering (QA), the answer to a question is produced by retrieving and then analyzing documents that might contain answers to the question. Most open QA systems have considered only retrieving information from unstructured text. Here
Recent advances in open-domain QA have led to strong models based on dense retrieval, but only focused on retrieving textual passages. In this work, we tackle open-domain QA over tables for the first time, and show that retrieval can be improved by a
Recent work on Open Domain Question Answering has shown that there is a large discrepancy in model performance between novel test questions and those that largely overlap with training questions. However, it is as of yet unclear which aspects of nove