ترغب بنشر مسار تعليمي؟ اضغط هنا

Mixup Decoding for Diverse Machine Translation

280   0   0.0 ( 0 )
 نشر من قبل Jicheng Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Diverse machine translation aims at generating various target language translations for a given source language sentence. Leveraging the linear relationship in the sentence latent space introduced by the mixup training, we propose a novel method, MixDiversity, to generate different translations for the input sentence by linearly interpolating it with different sentence pairs sampled from the training corpus when decoding. To further improve the faithfulness and diversity of the translations, we propose two simple but effective approaches to select diverse sentence pairs in the training corpus and adjust the interpolation weight for each pair correspondingly. Moreover, by controlling the interpolation weight, our method can achieve the trade-off between faithfulness and diversity without any additional training, which is required in most of the previous methods. Experiments on WMT16 en-ro, WMT14 en-de, and WMT17 zh-en are conducted to show that our method substantially outperforms all previous diverse machine translation methods.



قيم البحث

اقرأ أيضاً

Beam search is the go-to method for decoding auto-regressive machine translation models. While it yields consistent improvements in terms of BLEU, it is only concerned with finding outputs with high model likelihood, and is thus agnostic to whatever end metric or score practitioners care about. Our aim is to establish whether beam search can be replaced by a more powerful metric-driven search technique. To this end, we explore numerous decoding algorithms, including some which rely on a value function parameterised by a neural network, and report results on a variety of metrics. Notably, we introduce a Monte-Carlo Tree Search (MCTS) based method and showcase its competitiveness. We provide a blueprint for how to use MCTS fruitfully in language applications, which opens promising future directions. We find that which algorithm is best heavily depends on the characteristics of the goal metric; we believe that our extensive experiments and analysis will inform further research in this area.
Scheduled sampling is widely used to mitigate the exposure bias problem for neural machine translation. Its core motivation is to simulate the inference scene during training by replacing ground-truth tokens with predicted tokens, thus bridging the g ap between training and inference. However, vanilla scheduled sampling is merely based on training steps and equally treats all decoding steps. Namely, it simulates an inference scene with uniform error rates, which disobeys the real inference scene, where larger decoding steps usually have higher error rates due to error accumulations. To alleviate the above discrepancy, we propose scheduled sampling methods based on decoding steps, increasing the selection chance of predicted tokens with the growth of decoding steps. Consequently, we can more realistically simulate the inference scene during training, thus better bridging the gap between training and inference. Moreover, we investigate scheduled sampling based on both training steps and decoding steps for further improvements. Experimentally, our approaches significantly outperform the Transformer baseline and vanilla scheduled sampling on three large-scale WMT tasks. Additionally, our approaches also generalize well to the text summarization task on two popular benchmarks.
Speech-to-text translation (ST), which directly translates the source language speech to the target language text, has attracted intensive attention recently. However, the combination of speech recognition and machine translation in a single model po ses a heavy burden on the direct cross-modal cross-lingual mapping. To reduce the learning difficulty, we propose COnSecutive Transcription and Translation (COSTT), an integral approach for speech-to-text translation. The key idea is to generate source transcript and target translation text with a single decoder. It benefits the model training so that additional large parallel text corpus can be fully exploited to enhance the speech translation training. Our method is verified on three mainstream datasets, including Augmented LibriSpeech English-French dataset, TED English-German dataset, and TED English-Chinese dataset. Experiments show that our proposed COSTT outperforms the previous state-of-the-art methods. The code is available at https://github.com/dqqcasia/st.
Simultaneous translation has many important application scenarios and attracts much attention from both academia and industry recently. Most existing frameworks, however, have difficulties in balancing between the translation quality and latency, i.e ., the decoding policy is usually either too aggressive or too conservative. We propose an opportunistic decoding technique with timely correction ability, which always (over-)generates a certain mount of extra words at each step to keep the audience on track with the latest information. At the same time, it also corrects, in a timely fashion, the mistakes in the former overgenerated words when observing more source context to ensure high translation quality. Experiments show our technique achieves substantial reduction in latency and up to +3.1 increase in BLEU, with revision rate under 8% in Chinese-to-English and English-to-Chinese translation.
In Transformer-based neural machine translation (NMT), the positional encoding mechanism helps the self-attention networks to learn the source representation with order dependency, which makes the Transformer-based NMT achieve state-of-the-art result s for various translation tasks. However, Transformer-based NMT only adds representations of positions sequentially to word vectors in the input sentence and does not explicitly consider reordering information in this sentence. In this paper, we first empirically investigate the relationship between source reordering information and translation performance. The empirical findings show that the source input with the target order learned from the bilingual parallel dataset can substantially improve translation performance. Thus, we propose a novel reordering method to explicitly model this reordering information for the Transformer-based NMT. The empirical results on the WMT14 English-to-German, WAT ASPEC Japanese-to-English, and WMT17 Chinese-to-English translation tasks show the effectiveness of the proposed approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا