ﻻ يوجد ملخص باللغة العربية
Consider a projector matrix P, representing the first order reduced density matrix in a basis of orthonormal atom-centric basis functions. A mathematical question arises, and that is, how to break P into its natural component kernel projector matrices, while preserving N-representability of P. The answer relies upon 2- projector triple products, PjPPj. The triple product solutions, applicable within the quantum crystallography of large molecules, are determined by a new form of the Clinton equations, which - in their original form - have long been used to ensure N-representability of density matrices consistent with X-ray diffraction scattering factors.
We study the computational complexity of the N-representability problem in quantum chemistry. We show that this problem is QMA-complete, which is the quantum generalization of NP-complete. Our proof uses a simple mapping from spin systems to fermioni
QMA (Quantum Merlin-Arthur) is the quantum analogue of the class NP. There are a few QMA-complete problems, most notably the ``Local Hamiltonian problem introduced by Kitaev. In this dissertation we show some new QMA-complete problems. The first on
This work introduces a number of algebraic topology approaches, such as multicomponent persistent homology, multi-level persistent homology and electrostatic persistence for the representation, characterization, and description of small molecules and
From a geometric point of view, Paulis exclusion principle defines a hypersimplex. This convex polytope describes the compatibility of $1$-fermion and $N$-fermion density matrices, therefore it coincides with the convex hull of the pure $N$-represent
We consider the question of characterising the incompatibility of sets of high-dimensional quantum measurements. We introduce the concept of measurement incompatibility in subspaces. That is, starting from a set of measurements that is incompatible,