ﻻ يوجد ملخص باللغة العربية
We first formulate an inverse problem for a linear fractional Lame system. We determine the Lame parameters from exterior partial measurements of the Dirichlet-to-Neumann map. We further study an inverse obstacle problem as well as an inverse problem for a nonlinear fractional Lame system. Our arguments are based on the unique continuation property for the fractional operator as well as the associated Runge approximation property.
We study the inverse electrostatic and elasticity problems associated with Poisson and Navier equations. The uniqueness of solutions of these problems is proved for piecewise constant electric charge and internal stress distributions having a checker
We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain nonlinear equations in cases
Intrinsic nonlinear elasticity deals with the deformations of elastic bodies as isometric immersions of Riemannian manifolds into the Euclidean spaces (see Ciarlet [9,10]). In this paper, we study the rigidity and continuity properties of elastic bod
In this chapter, we mainly review theoretical results on inverse source problems for diffusion equations with the Caputo time-fractional derivatives of order $alphain(0,1)$. Our survey covers the following types of inverse problems: 1. determination
When considering fractional diffusion equation as model equation in analyzing anomalous diffusion processes, some important parameters in the model related to orders of the fractional derivatives, are often unknown and difficult to be directly measur