ﻻ يوجد ملخص باللغة العربية
The quantum simulation kernel is an important subroutine appearing as a very long gate sequence in many quantum programs. In this paper, we propose Paulihedral, a block-wise compiler framework that can deeply optimize this subroutine by exploiting high-level program structure and optimization opportunities. Paulihedral first employs a new Pauli intermediate representation that can maintain the high-level semantics and constraints in quantum simulation kernels. This naturally enables new large-scale optimizations that are hard to implement at the low gate-level. In particular, we propose two technology-independent instruction scheduling passes, and two technology-dependent code optimization passes which reconcile the circuit synthesis, gate cancellation, and qubit mapping stages of the compiler. Experimental results show that Paulihedral can outperform state-of-the-art compiler infrastructures in a wide-range of applications on both near-term superconducting quantum processors and future fault-tolerant quantum computers.
In this paper, we propose a novel quantum compiler optimization, named relaxed peephole optimization (RPO) for quantum computers. RPO leverages the single-qubit state information that can be determined statically by the compiler. We define that a qub
A quantum computer consists of a set of quantum bits upon which operations called gates are applied to perform computations. In order to perform quantum algorithms, physicists would like to design arbitrary gates to apply to quantum bits. However, th
Quantum error correction is vital for implementing universal quantum computing. A key component is the encoding circuit that maps a product state of physical qubits into the encoded multipartite entangled logical state. Known methods are typically no
To bridge the gap between limited hardware access and the huge demand for experiments for Noisy Intermediate-Scale Quantum (NISQ) computing system study, a simulator which can capture the modeling of both the quantum processor and its classical contr
This article presents a powerful algorithmic framework for big data optimization, called the Block Successive Upper bound Minimization (BSUM). The BSUM includes as special cases many well-known methods for analyzing massive data sets, such as the Blo