ﻻ يوجد ملخص باللغة العربية
We use the Cluster-EAGLE (C-EAGLE) hydrodynamical simulations to investigate the effects of self-interacting dark matter (SIDM) on galaxies as they fall into clusters. We find that SIDM galaxies follow similar orbits to their Cold Dark Matter (CDM) counterparts, but end up with ${sim}$25 per cent less mass by the present day. One in three SIDM galaxies are entirely disrupted, compared to one in five CDM galaxies. However, the excess stripping will be harder to observe than suggested by previous DM-only simulations because the most stripped galaxies form cores and also lose stars: the most discriminating objects become unobservable. The best test will be to measure the stellar-to-halo mass relation (SHMR) for galaxies with stellar mass $10^{10-11},mathrm{M}_{odot}$. This is 8 times higher in a cluster than in the field for a CDM universe, but 13 times higher for an SIDM universe. Given intrinsic scatter in the SHMR, these models could be distinguished with noise-free galaxy-galaxy strong lensing of ${sim}32$ cluster galaxies.
Dark matter self interactions can leave distinctive signatures on the properties of satellite galaxies around Milky Way--like hosts through their impact on tidal stripping, ram pressure, and gravothermal collapse. We delineate the regions of self-int
The abundance, distribution and inner structure of satellites of galaxy clusters can be sensitive probes of the properties of dark matter. We run 30 cosmological zoom-in simulations with self-interacting dark matter (SIDM), with a velocity-dependent
The formation and evolution of galaxies is known to be sensitive to tidal processes leading to intrinsic correlations between their shapes and orientations. Such correlations can be measured to high significance today, suggesting that cosmological in
We probe the self-interactions of dark matter using observational data of relaxed galaxy groups and clusters. Our analysis uses the Jeans formalism and considers a wider range of systematic effects than in previous work, including adiabatic contracti
We study the evolution of cosmological perturbations in dark-matter models with elastic and velocity-independent self interactions. Such interactions are imprinted in the matter-power spectrum as dark acoustic oscillations, which can be experimentall