ﻻ يوجد ملخص باللغة العربية
A constrained optimization problem is primal infeasible if its constraints cannot be satisfied, and dual infeasible if the constraints of its dual problem cannot be satisfied. We propose a novel iterative method, named proportional-integral projected gradient method (PIPG), for detecting primal and dual infeasiblity in convex optimization with quadratic objective function and conic constraints. The iterates of PIPG either asymptotically provide a proof of primal or dual infeasibility, or asymptotically satisfy a set of primal-dual optimality conditions. Unlike existing methods, PIPG does not compute matrix inverse, which makes it better suited for large-scale and real-time applications. We demonstrate the application of PIPG in quasiconvex and mixed-integer optimization using examples in constrained optimal control.
Conic optimization is the minimization of a differentiable convex objective function subject to conic constraints. We propose a novel primal-dual first-order method for conic optimization, named proportional-integral projected gradient method (PIPG).
This paper studies the distributed optimization problem where the objective functions might be nondifferentiable and subject to heterogeneous set constraints. Unlike existing subgradient methods, we focus on the case when the exact subgradients of th
We study the problem of detecting infeasibility of large-scale linear programming problems using the primal-dual hybrid gradient method (PDHG) of Chambolle and Pock (2011). The literature on PDHG has mostly focused on settings where the problem at ha
In this paper, we propose a relaxation to the stochastic ruler method originally described by Yan and Mukai in 1992 for asymptotically determining the global optima of discrete simulation optimization problems. We show that our proposed variant of th
Distributed optimization is concerned with using local computation and communication to realize a global aim of optimizing the sum of local objective functions. It has gained wide attention for a variety of applications in networked systems. This pap