ﻻ يوجد ملخص باللغة العربية
The inverse scattering problem, whose goal is to reconstruct an unknown scattering object from its scattered wave, is essential in fundamental wave physics and its wide applications in imaging sciences. However, it remains challenging to invert multiple scattering accurately and efficiently. Here, we exploit the modified Born series to demonstrate an inverse problem solver that efficiently and directly computes inverse multiple scattering without making any assumptions. The inversion process is based on a physically intuitive approach and can be easily extended to other exact forward solvers. We utilised the proposed method in optical diffraction tomography and numerically and experimentally demonstrated three-dimensional reconstruction of optically thick specimens with higher fidelity than those obtained using conventional methods based on the weak scattering approximation.
Exciting optical effects such as polarization control, imaging, and holography were demonstrated at the nanoscale using the complex and irregular structures of nanoparticles with the multipole Mie-resonances in the optical range. The optical response
We present an efficient, effective, and generic approach towards solving inverse problems. The key idea is to leverage the feedback signal provided by the forward process and learn an iterative update model. Specifically, at each iteration, the neura
Light scattering is one of the most important elementary processes in near-field optics. We build up the Born series for scattering by dielectric bodies with step boundaries. The Green function for a 2-dimensional homogeneous dielectric cylinder is o
The efficient delivery of light energy is a prerequisite for non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, injected waves experience random diffusion by multiple light scattering, and only a
Our everyday experience teaches us that the structure of a medium strongly influences how light propagates through it. A disordered medium, e.g., appears transparent or opaque, depending on whether its structure features a mean free path that is larg