ﻻ يوجد ملخص باللغة العربية
We performed a detailed timing study of the Atoll source 4U 1705-44 in order to understand the accretion disk geometry. Cross correlation function (CCF) studies were performed between soft (3-5 keV) and hard energy (15-30 keV) bands using the AstroSat LAXPC data. We detected hard as well as soft lags of the order of few ten to hundred seconds. A dynamical CCF study was performed in the same energy bands for one of the light curves and we found smaller lags of few tens of seconds ($<$ 50 s) suggesting that the variation is probably originating from the corona. We found a broad noise component around $sim$ 13 Hz in the 3-10 keV band which is absent in 10-20 keV band. We interpret the observed lags as the readjustment timescales of the corona or a boundary layer around the neutron star and constrain the height of this structure to few tens of km. We independently estimated the coronal height to be around 15 km assuming that the 13 Hz feature in the PDS is originating from the oscillation of the viscous shell around the neutron star.
In this paper, we present the first results of spectral and timing properties of the atoll source 4U 1705-44 using $sim$ 100 ks data obtained with Large Area X-ray Proportional Counter (LAXPC) onboard {it AstroSat}. The source was in the high-soft st
For the first time, simultaneous broadband spectral and timing study of the atoll source 4U 1705-44 was performed using AstroSat Soft X-ray Telescope (SXT) and Large Area X-ray Proportional Counter (LAXPC) data (0.8-70 keV). Based on the HID, the sou
The low-mass X-ray binary 4U1705-44 exhibits dramatic long-term X-ray time variability with a timescale of several hundred days. The All-Sky Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE) and the Japanese Monitor of All-sky X-ray Image (
4U 1705-44 is one of the most-studied type I X-ray burster and Atoll sources. This source represents a perfect candidate to test different models proposed to self-consistently track the physical changes occurring between different spectral states bec
Iron emission lines at 6.4-6.97 keV, identified with Kalpha radiative transitions, are among the strongest discrete features in the X-ray band. These are one of the most powerful probes to infer the properties of the plasma in the innermost part of t