ﻻ يوجد ملخص باللغة العربية
The tippedisk is a mathematical-mechanical archetype for a peculiar friction-induced instability phenomenon leading to the inversion of an unbalanced spinning disk, being reminiscent to (but different from) the well-known inversion of the tippetop. A reduced model of the tippedisk, in the form of a three-dimensional ordinary differential equation, has been derived recently, followed by a preliminary local stability analysis of stationary spinning solutions. In the current paper, a global analysis of the reduced system is pursued using the framework of singular perturbation theory. It is shown how the presence of friction leads to slow-fast dynamics and the creation of a two-dimensional slow manifold. Furthermore, it is revealed that a bifurcation scenario involving a homoclinic bifurcation and a Hopf bifurcation leads to an explanation of the inversion phenomenon. In particular, a closed-form condition for the critical spinning speed for the inversion phenomenon is derived. Hence, the tippedisk forms an excellent mathematical-mechanical problem for the analysis of global bifurcations in singularly perturbed dynamics.
An averaging method is applied to derive effective approximation to the following singularly perturbed nonlinear stochastic damped wave equation u u_{tt}+u_t=D u+f(u)+ u^alphadot{W} on an open bounded domain $DsubsetR^n$,, $1leq nleq 3$,. Here $ u>0
The singularly perturbed Riccati equation is the first-order nonlinear ODE $hbar partial_x f = af^2 + bf + c$ in the complex domain where $hbar$ is a small complex parameter. We prove an existence and uniqueness theorem for exact solutions with presc
We consider smooth systems limiting as $epsilon to 0$ to piecewise-smooth (PWS) systems with a boundary-focus (BF) bifurcation. After deriving a suitable local normal form, we study the dynamics for the smooth system with $0 < epsilon ll 1$ using a c
Boundary equilibria bifurcation (BEB) arises in piecewise-smooth systems when an equilibrium collides with a discontinuity set under parameter variation. Singularly perturbed BEB refers to a bifurcation arising in singular perturbation problems which
We prove an existence and uniqueness theorem for exact WKB solutions of general singularly perturbed linear second-order ODEs in the complex domain. These include the one-dimensional time-independent complex Schrodinger equation. Notably, our results