ﻻ يوجد ملخص باللغة العربية
The present work considers systems whose dynamics are governed by the nonlinear interactions among groups of 6 nonlinear waves, such as those described by the unforced quintic nonlinear Schrodinger equation. Specific parameter regimes in which ensemble-averaged dynamics of such systems with finite size are accurately described by a wave kinetic equation, as used in wave turbulence theory, are theoretically predicted. In addition, the underlying reasons that the wave kinetic equation may be a poor predictor of wave dynamics outside these regimes are also discussed. These theoretical predictions are directly verified by comparing ensemble averages of solutions to the dynamical equation to solutions of the wave kinetic equation.
We report results of sumulation of wave turbulence. Both inverse and direct cascades are observed. The definition of mesoscopic turbulence is given. This is a regime when the number of modes in a system involved in turbulence is high enough to qualit
We investigate experimentally turbulence of surface gravity waves in the Coriolis facility in Grenoble by using both high sensitivity local probes and a time and space resolved stereoscopic reconstruction of the water surface. We show that the water
A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function $Z$ is o
We report on the observation of surface gravity wave turbulence at scales larger than the forcing ones in a large basin. In addition to the downscale transfer usually reported in gravity wave turbulence, an upscale transfer is observed, interpreted a
In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both of the Fourier space and