ﻻ يوجد ملخص باللغة العربية
As a basic dynamic feature on complex networks, the property of random walk has received a lot of attention in recent years. In this paper, we first studied the analytical expression of the mean global first passage time (MGFPT) on the 3-dimensional 3-level Sierpinski gasket network. Based on the self-similar structure of the network, the correlation between the MGFPT and the average trapping time (ATT) is found, and then the analytical expression of the ATT is obtained. Finally, by establishing a joint network model, we further give the standard process of solving the analytical expression of the ATT when there is a set of trap nodes in the network. By illustrating examples and numerical simulations, it can be proved that when the trap node sets are different, the ATT will be quite different, but the the super-linear relationship with the number of iterations will not be changed.
As a classic self-similar network model, Sierpinski gasket network has been used many times to study the characteristics of self-similar structure and its influence on the dynamic properties of the network. However, the network models studied in thes
We derive exactly the number of Hamiltonian paths H(n) on the two dimensional Sierpinski gasket SG(n) at stage $n$, whose asymptotic behavior is given by $frac{sqrt{3}(2sqrt{3})^{3^{n-1}}}{3} times (frac{5^2 times 7^2 times 17^2}{2^{12} times 3^5 tim
In the case of some fractals, sampling with average values on cells is more natural than sampling on points. In this paper we investigate this method of sampling on $SG$ and $SG_{3}$. In the former, we show that the cell graph approximations have the
The multifractal behavior of the normalized first passage time is investigated on the two dimensional Sierpinski gasket with both absorbing and reflecting barriers. The normalized first passage time for Sinai model and the logistic model to arrive at
We present the numbers of ice model and eight-vertex model configurations (with Boltzmann factors equal to one), I(n) and E(n) respectively, on the two-dimensional Sierpinski gasket SG(n) at stage $n$. For the eight-vertex model, the number of config