ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-cycle fatigue of a nickel-based superalloy at high temperature: Simplified micromechanical modelling

111   0   0.0 ( 0 )
 نشر من قبل Valerie Brien
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work is focused on the micromechanical modelling of the low cycle fatigue of the nickel based $gamma/gamma$ superalloy AM1 at high temperature. The nature of the activated slip systems in the different types of channels of the $gamma$ phase is analysed, taking into account the combined effects of the applied and internal stresses. The latter are split into two contributions, misfit stresses and compatibility stresses between the elastic $gamma$ phase and the elasto-plastic $gamma$ phase, which are estimated within a simplified composite approach. Internal stresses may induce slip activity and/or be relaxed by it, which results in a complex sequence of slip activation events in the different channels under increasing applied stress. The consideration of these effects leads to a prediction of the nature and distribution of the active slip systems within the channels in [001] tension, compression and during low cycle fatigue. The resulting microstructural behaviour and its consequences regarding the anisotropic nature of the coalescence of the $gamma$ precipitates are discussed with respect to the available experimental data.



قيم البحث

اقرأ أيضاً

78 - H.R. Boehm , S. Gigan , G. Langer 2006
We report on the fabrication and characterization of a micromechanical oscillator consisting only of a free-standing dielectric Bragg mirror with high optical reflectivity and high mechanical quality. The fabrication technique is a hybrid approach in volving laser ablation and dry etching. The mirror has a reflectivity of 99.6%, a mass of 400ng, and a mechanical quality factor Q of approximately 10^4. Using this micromirror in a Fabry Perot cavity, a finesse of 500 has been achieved. This is an important step towards designing tunable high-Q high-finesse cavities on chip.
A mesoscale study of a single crystal nickel-base superalloy subjected to an industrially relevant process simulation has revealed the complex interplay between microstructural development and the micromechanical behaviour. As sample gauge volumes we re smaller than the length scale of the highly cored structure of the parent material from which they were produced, their subtle composition differences gave rise to differing work hardening rates, influenced by varying secondary dendrite arm spacings, gamma-prime phase solvus temperatures and a topologically inverted gamma/gamma-prime microstructure. The gamma-prime precipitates possessed a characteristic `X morphology, resulting from the simultaneously active solute transport mechanisms of thermally favoured octodendritic growth and N-type rafting, indicating creep-type mechanisms were prevalent. High resolution-electron backscatter diffraction (HR-EBSD) characterisation reveals deformation patterning that follows the gamma/gamma-prime microstructure, with high geometrically necessary dislocation density fields localised to the gamma/gamma-prime interfaces; Orowan looping is evidently the mechanism that mediated plasticity. Examination of the residual elastic stresses indicated the `X gamma-prime precipitate morphology had significantly enhanced the deformation heterogeneity, resulting in stress states within the gamma channels that favour slip, and that encourage further growth of gamma-prime precipitate protrusions. The combination of such localised plasticity and residual stresses are considered to be critical in the formation of the recrystallisation defect in subsequent post-casting homogenisation heat treatments.
A new phenomenological technique for using constant amplitude loading data to predict fatigue life from a variable amplitude strain history is presented. A critical feature of this reversal-by-reversal model is that the damage accumulation is inheren tly non-linear. The damage for a reversal in the variable amplitude loading history is predicted by approximating that the accumulated damage comes from a constant amplitude loading that has the strain range of the particular variable amplitude reversal. A key feature of this approach is that overloads at the beginning of the strain history have a more substantial impact on the total lifetime than overloads applied toward the end of the cycle life. This technique effectively incorporates the strain history in the damage prediction and has the advantage over other methods in that there are no fitting parameters that require substantial experimental data. The model presented here is validated using experimental variable amplitude fatigue data for three different metals.
Primary {gamma} phase instead of carbides and borides plays an important role in suppressing grain growth during solution at 1433K of FGH98 nickel-based polycrystalline alloys. Results illustrate that as-fabricated FGH98 has equiaxed grain structure and after heat treatment, grains remain equiaxed but grow larger. In order to clarify the effects of the size and volume fraction of the primary {gamma} phase on the grain growth during heat treatment, this paper establish a 2D Cellular Automata (CA) model based on the thermal activation and the lowest energy principle. The CA results are compared with the experimental results and show a good fit with an error less than 10%. Grain growth kinetics are depicted and simulations in real time for various sizes and volume fractions of primary {gamma} particles work out well with the Zener relation. The coefficient n value in Zener relation is theoretically calculated and its minimum value is 0.23 when the radius of primary {gamma} is 2.8{mu}m.
73 - Ying Wang , Xu Xu , Wenxia Zhao 2021
The damage mechanisms and load redistribution of high strength TC17 titanium alloy/unidirectional SiC fibre composite (fibre diameter = 100 $mu$m) under high temperature (350 {deg}C) fatigue cycling have been investigated in situ using synchrotron X- ray computed tomography (CT) and X-ray diffraction (XRD) for high cycle fatigue (HCF) under different stress amplitudes. The three-dimensional morphology of the crack and fibre fractures has been mapped by CT. During stable growth, matrix cracking dominates with the crack deflecting (by 50-100 $mu$m in height) when bypassing bridging fibres. A small number of bridging fibres have fractured close to the matrix crack plane especially under relatively high stress amplitude cycling. Loading to the peak stress led to rapid crack growth accompanied by a burst of fibre fractures. Many of the fibre fractures occurred 50-300 $mu$m from the matrix crack plane during rapid growth, in contrast to that in the stable growth stage, leading to extensive fibre pull-out on the fracture surface. The changes in fibre loading, interfacial stress, and the extent of fibre-matrix debonding in the vicinity of the crack have been mapped for the fatigue cycle and after the rapid growth by high spatial resolution XRD. The fibre/matrix interfacial sliding extends up to 600 $mu$m (in the stable growth zone) or 700 $mu$m (in the rapid growth zone) either side of the crack plane. The direction of interfacial shear stress reverses with the loading cycle, with the maximum frictional sliding stress reaching ~55 MPa in both the stable growth and rapid growth regimes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا