ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of a Composite Wave of Two Seperate Strong Viscous Shock Waves for 1-D Isentropic Navier-Stokes System

90   0   0.0 ( 0 )
 نشر من قبل Lin Chang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Lin Chang




اسأل ChatGPT حول البحث

In this paper, the large time behavior of solutions of 1-D isentropic Navier-Stokes system is investigated. It is shown that a composite wave consisting of two viscous shock waves is stable for the Cauchy problem provided that the two waves are initially far away from each other. Moreover the strengths of two waves could be arbitrarily large.



قيم البحث

اقرأ أيضاً

138 - Lin Chang 2021
In this paper, the asymptotic-time behavior of solutions to an initial boundary value problem in the half space for 1-D isentropic Navier-Stokes system is investigated. It is shown that the viscous shock wave is stable for an impermeable wall problem where the velocity is zero on the boundary provided that the shock wave is initially far away from the boundary. Moreover, the strength of shock wave could be arbitrarily large. This work essentially improves the result of [A. Matsumura, M. Mei, Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary, Arch. Ration. Mech. Anal., 146(1): 1-22, 1999], where the strength of shock wave is sufficiently small.
We study the long-time behavior an extended Navier-Stokes system in $R^2$ where the incompressibility constraint is relaxed. This is one of several reduced models of Grubb and Solonnikov 89 and was revisited recently (Liu, Liu, Pego 07) in bounded do mains in order to explain the fast convergence of certain numerical schemes (Johnston, Liu 04). Our first result shows that if the initial divergence of the fluid velocity is mean zero, then the Oseen vortex is globally asymptotically stable. This is the same as the Gallay Wayne 05 result for the standard Navier-Stokes equations. When the initial divergence is not mean zero, we show that the analogue of the Oseen vortex exists and is stable under small perturbations. For completeness, we also prove global well-posedness of the system we study.
115 - Yingwei Li 2016
In this paper, we investigate and prove the nonlinear stability of viscous shock wave solutions of a scalar viscous conservation law, using the methods developed for general systems of conservation laws by Howard, Mascia, Zumbrun and others, based on instantaneous tracking of the location of the perturbed viscous shock wave. In some sense, this paper extends the treatment in a previous expository work of Zumbrun [Instantaneous shock location ...] on Burgers equation to the general case, giving an exposition of these methods in the simplest setting of scalar equations. In particular we give by a rescaling argument a simple treatment of nonlinear stability in the small-amplitude case.
In this paper, we are concerned with the local-in-time well-posedness of a fluid-kinetic model in which the BGK model with density dependent collision frequency is coupled with the inhomogeneous Navier-Stokes equation through drag forces. To the best knowledge of authors, this is the first result on the existence of local-in-time smooth solution for particle-fluid model with nonlinear inter-particle operator for which the existence of time can be prolonged as the size of initial data gets smaller.
81 - Denis Serre 2021
In several space dimensions, scalar shock waves between two constant states u $pm$ are not necessarily planar. We describe them in detail. Then we prove their asymptotic stability, assuming that they are uniformly non-characteristic. Our result is co nditional for a general flux, while unconditional for the multi-D Burgers equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا