ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong-field physics with nanospheres

142   0   0.0 ( 0 )
 نشر من قبل Lennart Seiffert
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When intense laser fields interact with nanoscale targets, strong-field physics meets plasmonic near-field enhancement and sub-wavelength localization of light. Photoemission spectra reflect the associated attosecond optical and electronic response and encode the collisional and collective dynamics of the solid. Nanospheres represent an ideal platform to explore the underlying attosecond nanophysics because of their particularly simple geometry. This review summarizes key results from the last decade and aims to provide the essential stepping stones for students and researchers to enter this field.



قيم البحث

اقرأ أيضاً

Spin-orbit interaction of light can lead to the so-called optical mirages, i.e. a perceived displacement in the position of a particle due to the spiraling structure of the scattered light. In electric dipoles, the maximum displacement is subwaveleng th and does not depend on the optical properties of the scatterer. Here we will show that the optical mirage in high refractive index dielectric nanoparticles depends strongly on the ratio between electric and magnetic dipolar responses. When the dual symmetry is satisfied (at the first Kerker condition), there is a considerable enhancement (far above the wavelength) of the spin-orbit optical mirage which can be related to the emergence of an optical vortex in the backscattering direction.
Nanometer-sized metal particles exhibit broadening of the localized surface plasmon resonance (LSPR) in comparison to its value predicted by the classical Mie theory. Using our model for the LSPR dependence on non-local surface screening and size qua ntization, we quantitatively relate the observed plasmon width to the nanoparticle radius $R$ and the permittivity of the surrounding medium $epsilon_m$. For Ag nanospheres larger than 8 nm only the non-local dynamical effects occurring at the surface are important and, up to a diameter of 25 nm, dominate over the bulk scattering mechanism. Qualitatively, the LSPR width is inversely proportional to the particle size and has a nonmonotonic dependence on the permittivity of the host medium, exhibiting for Ag a maximum at $epsilon_mapprox2.5$. Our calculated LSPR width is compared with recent experimental data.
Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here we investigate the role that different surface effects, namely electronic spill-out a nd diffuse surface scattering, play in the optical properties of these ultra-low electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior both in position and width for large particles and a strong blueshift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultra-low electron density nanoparticles than the spill-out effect.
Sub-laser cycle time scale of electronic response to strong laser fields enables attosecond dynamical imaging in atoms, molecules and solids. Optical tunneling and high harmonic generation are the hallmarks of attosecond imaging in optical domain, in cluding imaging of phase transitions in solids. Topological phase transition yields a state of matter intimately linked with electron dynamics, as manifested via the chiral edge currents in topological insulators. Does topological state of matter leave its mark on optical tunneling and sub-cycle electronic response? We identify distinct topological effects on the directionality and the attosecond timing of currents arising during electron injection into conduction bands. We show that electrons tunnel across the band gap differently in trivial and topological phases, for the same band structure, and identify the key role of the Berry curvature in this process. These effects map onto topologically-dependent attosecond delays in high harmonic emission and the helicities of the emitted harmonics, which can record the phase diagram of the system and its topological invariants. Thus, the topological state of the system controls its attosecond, highly non-equilibrium electronic response to strong low-frequency laser fields, in bulk. Our findings create new roadmaps in studies of topological systems, building on ubiquitous properties of sub-laser cycle strong field response - a unique mark of attosecond science.
Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasi-static regime and enable exploiting the effects related to ponderomoti ve scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photo-ionization and allowed a discrimination amongst different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: 1) intense mid-IR sources that can create high energy photons and electrons while operating within the quasi-static regime, and 2) detection systems that can detect the generated high energy particles and image the entire momentum space of the interaction in full coincidence. Here we present a unique combination of these two essential ingredients, namely a 160~kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a six order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV) and high (hundreds of eV) energies. The low energy region is used to investigate recently discovered low-energy structures, while the high energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover we present, for the first time, the correlated momentum distribution of electrons from non-sequential double-ionization driven by mid-IR pulses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا