We have established a novel method to detect non-Markovian indivisible quantum channels using structural physical approximation. We have shown that this method can be used to detect eternal non -Markovian operations. We have further established that harnessing eternal non-Markovianity, we can device a protocol to detect quantum entanglement.
It is known that entanglement dynamics of two noninteracting qubits, locally subjected to classical environments, may exhibit revivals. A simple explanation of this phenomenon may be provided by using the concept of hidden entanglement, which signals
the presence of entanglement that may be recovered without the help of nonlocal operations. Here we discuss the link between hidden entanglement and the (non-Markovian) flow of classical information between the system and the environment.
In order to engineer an open quantum system and its evolution, it is essential to identify and control the memory effects. These are formally attributed to the non-Markovianity of dynamics that manifests itself by the evolution being indivisible in t
ime, a property which can be witnessed by a non-monotonic behavior of contractive functions or correlation measures. We show that by monitoring directly the entanglement behavior of a system in a tripartite setting it is possible to witness all invertible non-Markovian dynamics, as well as all (also non-invertible) qubit evolutions. This is achieved by using negativity, a computable measure of entanglement, which in the usual bipartite setting is not a universal non-Markovianity witness. We emphasize further the importance of multipartite states by showing that non-Markovianity cannot be faithfully witnessed by any contractive function of single qubits. We support our statements by an explicit example of eternally non-Markovian qubit dynamics, for which negativity can witness non-Markovianity at arbitrary time scales.
We identify a set of dynamical maps of open quantum system, and refer to them as $ epsilon $-Markovian maps. It is constituted of maps which, in a higher dimensional system-environment Hilbert space, possibly violate Born approximation but only a lit
tle. We characterize the $epsilon$-nonmarkovianity of a general dynamical map by the minimum distance of that map from the set of $epsilon$-Markovian maps. We analytically derive an inequality which gives a bound on the $ epsilon$-nonmarkovianity of the dynamical map, in terms of an entanglement-like resource generated between the system and its immediate environment. In the special case of a vanishing $epsilon$, this inequality gives a relation between the $epsilon$-nonmarkovianity of the reduced dynamical map on the system and the entanglement generated between the system and its immediate environment. We numerically investigate the behavior of the similar distant based measures of non-Markovianity for classes of amplitude damping and phase damping channels.
We investigate the asymptotic dynamics of exact quantum Brownian motion. We find that non-Markovianity can persist in the long-time limit, and that in general the asymptotic behaviour depends strongly on the system-environment coupling and the spectral density of the bath.
The non-Markovia dynamics of quantum evolution plays an important role in open quantum sytem. However, how to quantify non-Markovian behavior and what can be obtained from non- Markovianity are still open questions, especially in complex solid system
s. Here we address the problem of quantifying non-Markovianity with entanglement in a genuine noisy solid state system at room temperature. We observed the non-Markovianity of quantum evolution with entanglement. By prolonging entanglement with dynamical decoupling, we can reveal the non-Markovianity usually concealed in the environment and obtain detailed environment information. This method is expected to be useful in quantum metrology and quantum information science.