ﻻ يوجد ملخص باللغة العربية
With the Increasing use of Machine Learning in Android applications, more research and efforts are being put into developing better-performing machine learning algorithms with a vast amount of data. Along with machine learning for mobile phones, the threat of extraction of trained machine learning models from application packages (APK) through reverse engineering exists. Currently, there are ways to protect models in mobile applications such as name obfuscation, cloud deployment, last layer isolation. Still, they offer less security, and their implementation requires more effort. This paper gives an algorithm to protect trained machine learning models inside android applications with high security and low efforts to implement it. The algorithm ensures security by encrypting the model and real-time decrypting it with 256-bit Advanced Encryption Standard (AES) inside the running application. It works efficiently with big model files without interrupting the User interface (UI) Thread. As compared to other methods, it is fast, more secure, and involves fewer efforts. This algorithm provides the developers and researchers a way to secure their actions and making the results available to all without any concern.
We present BPFroid -- a novel dynamic analysis framework for Android that uses the eBPF technology of the Linux kernel to continuously monitor events of user applications running on a real device. The monitored events are collected from different com
PCBs are the core components for the devices ranging from the consumer electronics to military applications. Due to the accessibility of the PCBs, they are vulnerable to the attacks such as probing, eavesdropping, and reverse engineering. In this pap
We propose the client-side AES256 encryption for a cloud SQL DB. A column ciphertext is deterministic or probabilistic. We trust the cloud DBMS for security of its run-time values, e.g., through a moving target defense. The client may send AES key(s)
Homomorphic encryption (HE) is a promising privacy-preserving technique for cross-silo federated learning (FL), where organizations perform collaborative model training on decentralized data. Despite the strong privacy guarantee, general HE schemes r
Machine learning is a popular approach to signatureless malware detection because it can generalize to never-before-seen malware families and polymorphic strains. This has resulted in its practical use for either primary detection engines or for supp