ﻻ يوجد ملخص باللغة العربية
We study a non-Hermitian AA model with the long-range hopping, $1/r^a$, and different choices of the quasi-periodic parameters $beta$ to be the member of the metallic mean family. We find that when the power-law exponent is in the $a<1$ regime, the system displays a delocalized-to-multifractal (DM) edge in its eigenstate spectrum. For the $a>1$ case, it exists a delocalized-to-localized (DL) edge, also called the mobility edge. While a striking feature of the Hermitian AA model with the long-range hopping is that the fraction of delocalized states can be obtained from a general sequence manifesting a mathematical feature of the metallic mean family, we find that the DM or DL edge for the non-Hermitian cases is independent of the mathematical feature of the metallic mean family. To understand this difference, we consider a specific case of the non-Hermitian long-range AA model with $a=2$, for which we can apply the Sarnak method to analytically derive its localization transition points and the exact expression of the DL edge. Our analytical result clearly demonstrates that the mobility edge is independent of the quasi-periodic parameter $beta$, which confirms our numerical result. Finally, an optical setup is proposed to realize the non-Hermitian long-range AA model.
We study the many-body localization (MBL) transition of Floquet eigenstates in a driven, interacting fermionic chain with an incommensurate Aubry-Andr{e} potential and a time-periodic hopping amplitude as a function of the drive frequency $omega_D$ u
We investigate the nonequilibrium dynamics of the one-dimension Aubry-Andr{e}-Harper model with $p$-wave superconductivity by changing the potential strength with slow and sudden quench. Firstly, we study the slow quench dynamics from localized phase
We study a class of off-diagonal quasiperiodic hopping models described by one-dimensional Su-Schrieffer-Heeger chain with quasiperiodic modulations. We unveil a general dual-mapping relation in parameter space of the dimerization strength $lambda$ a
One-dimensional quasi-periodic systems with power-law hopping, $1/r^a$, differ from both the standard Aubry-Azbel-Harper (AAH) model and from power-law systems with uncorrelated disorder. Whereas in the AAH model all single-particle states undergo a
Off-diagonal Aubry-Andr{e} (AA) model has recently attracted a great deal of attention as they provide condensed matter realization of topological phases. We numerically study a generalized off-diagonal AA model with p-wave superfluid pairing in the