ﻻ يوجد ملخص باللغة العربية
This paper proposes novel set-theoretic approaches for state estimation in bounded-error discrete-time nonlinear systems, subject to nonlinear observations/constraints. By transforming the polytopic sets that are characterized as zonotope bundles (ZB) and/or constrained zonotopes (CZ), from the state space to the space of the generators of ZB/CZ, we leverage a recent result on the remainder-form mixed-monotone decomposition functions to compute the propagated set, i.e., a ZB/CZ that is guaranteed to enclose the set of the state trajectories of the considered system. Further, by applying the remainder-form decomposition functions to the nonlinear observation function, we derive the updated set, i.e., an enclosing ZB/CZ of the intersection of the propagated set and the set of states that are compatible/consistent with the observations/constraints. Finally, we show that the mean value extension result in [1] for computing propagated sets can also be extended to compute the updated set when the observation function is nonlinear.
In this paper, we study the problem of designing a simultaneous mode, input, and state set-valued observer for a class of hidden mode switched nonlinear systems with bounded-norm noise and unknown input signals, where the hidden mode and unknown inpu
In this paper, we first propose a method that can efficiently compute the maximal robust controlled invariant set for discrete-time linear systems with pure delay in input. The key to this method is to construct an auxiliary linear system (without de
We study the problem of designing interval-valued observers that simultaneously estimate the system state and learn an unknown dynamic model for partially unknown nonlinear systems with dynamic unknown inputs and bounded noise signals. Leveraging aff
In this paper, we propose fixed-order set-valued (in the form of l2-norm hyperballs) observers for some classes of nonlinear bounded-error dynamical systems with unknown input signals that simultaneously find bounded hyperballs of states and unknown
In this paper we propose a novel method to establish stability and, in addition, convergence to a consensus state for a class of discrete-time Multi-Agent System (MAS) evolving according to nonlinear heterogeneous local interaction rules which is not