ترغب بنشر مسار تعليمي؟ اضغط هنا

Guaranteed State Estimation via Indirect Polytopic Set Computation for Nonlinear Discrete-Time Systems

167   0   0.0 ( 0 )
 نشر من قبل Mohammad Khajenejad
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes novel set-theoretic approaches for state estimation in bounded-error discrete-time nonlinear systems, subject to nonlinear observations/constraints. By transforming the polytopic sets that are characterized as zonotope bundles (ZB) and/or constrained zonotopes (CZ), from the state space to the space of the generators of ZB/CZ, we leverage a recent result on the remainder-form mixed-monotone decomposition functions to compute the propagated set, i.e., a ZB/CZ that is guaranteed to enclose the set of the state trajectories of the considered system. Further, by applying the remainder-form decomposition functions to the nonlinear observation function, we derive the updated set, i.e., an enclosing ZB/CZ of the intersection of the propagated set and the set of states that are compatible/consistent with the observations/constraints. Finally, we show that the mean value extension result in [1] for computing propagated sets can also be extended to compute the updated set when the observation function is nonlinear.



قيم البحث

اقرأ أيضاً

In this paper, we study the problem of designing a simultaneous mode, input, and state set-valued observer for a class of hidden mode switched nonlinear systems with bounded-norm noise and unknown input signals, where the hidden mode and unknown inpu ts can represent fault or attack models and exogenous fault/disturbance or adversarial signals, respectively. The proposed multiple-model design has three constituents: (i) a bank of mode-matched set-valued observers, (ii) a mode observer, and (iii) a global fusion observer. The mode-matched observers recursively find the sets of compatible states and unknown inputs conditioned on the mode being the true mode, while the mode observer eliminates incompatible modes by leveraging a residual-based criterion. Then, the global fusion observer outputs the estimated sets of states and unknown inputs by taking the union of the mode-matched set-valued estimates over all compatible modes. Moreover, sufficient conditions to guarantee the elimination of all false modes (i.e., mode-detectability) are provided and the effectiveness of our approach is demonstrated and compared with existing approaches using an illustrative example.
In this paper, we first propose a method that can efficiently compute the maximal robust controlled invariant set for discrete-time linear systems with pure delay in input. The key to this method is to construct an auxiliary linear system (without de lay) with the same state-space dimension of the original system in consideration and to relate the maximal invariant set of the auxiliary system to that of the original system. When the system is subject to disturbances, guaranteeing safety is harder for systems with input delays. Ability to incorporate any additional information about the disturbance becomes more critical in these cases. Motivated by this observation, in the second part of the paper, we generalize the proposed method to take into account additional preview information on the disturbances, while maintaining computational efficiency. Compared with the naive approach of constructing a higher dimensional system by appending the state-space with the delayed inputs and previewed disturbances, the proposed approach is demonstrated to scale much better with the increasing delay time.
We study the problem of designing interval-valued observers that simultaneously estimate the system state and learn an unknown dynamic model for partially unknown nonlinear systems with dynamic unknown inputs and bounded noise signals. Leveraging aff ine abstraction methods and the existence of nonlinear decomposition functions, as well as applying our previously developed data-driven function over-approximation/abstraction approach to over-estimate the unknown dynamic model, our proposed observer recursively computes the maximal and minimal elements of the estimate intervals that are proven to contain the true augmented states. Then, using observed output/measurement signals, the observer iteratively shrinks the intervals by eliminating estimates that are not compatible with the measurements. Finally, given new interval estimates, the observer updates the over-approximation of the unknown model dynamics. Moreover, we provide sufficient conditions for uniform boundedness of the sequence of estimate interval widths, i.e., stability of the designed observer, in the form of tractable (mixed-)integer programs with finitely countable feasible sets.
In this paper, we propose fixed-order set-valued (in the form of l2-norm hyperballs) observers for some classes of nonlinear bounded-error dynamical systems with unknown input signals that simultaneously find bounded hyperballs of states and unknown inputs that include the true states and inputs. Necessary and sufficient conditions in the form of Linear Matrix Inequalities (LMIs) for the stability (in the sense of quadratic stability) of the proposed observers are derived for ($mathcal{M},gamma$)- Quadratically Constrained (($mathcal{M},gamma$)-QC) systems, which includes several classes of nonlinear systems: (I) Lipschitz continuous, (II) ($mathcal{A},gamma$)-QC* and (III) Linear Parameter-Varying (LPV) systems. This new quadratic constraint property is at least as general as the incremental quadratic constraint property for nonlinear systems and is proven in the paper to embody a broad range of nonlinearities. In addition, we design the optimal $mathcal{H}_{infty}$ observer among those that satisfy the quadratic stability conditions and show that the design results in Uniformly Bounded-Input Bounded-State (UBIBS) estimate radii/error dynamics and uniformly bounded sequences of the estimate radii. Furthermore, we provide closed-form upper bound sequences for the estimate radii and sufficient condition for their convergence to steady state. Finally, the effectiveness of the proposed set-valued observers is demonstrated through illustrative examples, where we compare the performance of our observers with some existing observers.
In this paper we propose a novel method to establish stability and, in addition, convergence to a consensus state for a class of discrete-time Multi-Agent System (MAS) evolving according to nonlinear heterogeneous local interaction rules which is not based on Lyapunov function arguments. In particular, we focus on a class of discrete-time MASs whose global dynamics can be represented by sub-homogeneous and order-preserving nonlinear maps. This paper directly generalizes results for sub-homogeneous and order-preserving linear maps which are shown to be the counterpart to stochastic matrices thanks to nonlinear Perron-Frobenius theory. We provide sufficient conditions on the structure of local interaction rules among agents to establish convergence to a fixed point and study the consensus problem in this generalized framework as a particular case. Examples to show the effectiveness of the method are provided to corroborate the theoretical analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا