ﻻ يوجد ملخص باللغة العربية
Mixture-of-Experts (MoE) with sparse conditional computation has been proved an effective architecture for scaling attention-based models to more parameters with comparable computation cost. In this paper, we propose Sparse-MLP, scaling the recent MLP-Mixer model with sparse MoE layers, to achieve a more computation-efficient architecture. We replace a subset of dense MLP blocks in the MLP-Mixer model with Sparse blocks. In each Sparse block, we apply two stages of MoE layers: one with MLP experts mixing information within channels along image patch dimension, one with MLP experts mixing information within patches along the channel dimension. Besides, to reduce computational cost in routing and improve expert capacity, we design Re-represent layers in each Sparse block. These layers are to re-scale image representations by two simple but effective linear transformations. When pre-training on ImageNet-1k with MoCo v3 algorithm, our models can outperform dense MLP models by 2.5% on ImageNet Top-1 accuracy with fewer parameters and computational cost. On small-scale downstream image classification tasks, i.e. Cifar10 and Cifar100, our Sparse-MLP can still achieve better performance than baselines.
Convolutional Neural Networks (CNNs) are the go-to model for computer vision. Recently, attention-based networks, such as the Vision Transformer, have also become popular. In this paper we show that while convolutions and attention are both sufficien
An Axial Shifted MLP architecture (AS-MLP) is proposed in this paper. Different from MLP-Mixer, where the global spatial feature is encoded for the information flow through matrix transposition and one token-mixing MLP, we pay more attention to the l
Graph Neural Network (GNN) has been demonstrated its effectiveness in dealing with non-Euclidean structural data. Both spatial-based and spectral-based GNNs are relying on adjacency matrix to guide message passing among neighbors during feature aggre
This paper presents a simple MLP-like architecture, CycleMLP, which is a versatile backbone for visual recognition and dense predictions, unlike modern MLP architectures, e.g., MLP-Mixer, ResMLP, and gMLP, whose architectures are correlated to image
This paper presents Hire-MLP, a simple yet competitive vision MLP architecture via hierarchical rearrangement. Previous vision MLPs like MLP-Mixer are not flexible for various image sizes and are inefficient to capture spatial information by flatteni