A graph $G$ is $k$-edge-Hamiltonian if any collection of vertex-disjoint paths with at most $k$ edges altogether belong to a Hamiltonian cycle in $G$. A graph $G$ is $k$-Hamiltonian if for all $Ssubseteq V(G)$ with $|S|le k$, the subgraph induced by $V(G)setminus S$ has a Hamiltonian cycle. These two concepts are classical extensions for the usual Hamiltonian graphs. In this paper, we present some spectral sufficient conditions for a graph to be $k$-edge-Hamiltonian and $k$-Hamiltonian in terms of the adjacency spectral radius as well as the signless Laplacian spectral radius. Our results extend the recent works proved by Li and Ning [Linear Multilinear Algebra 64 (2016)], Nikiforov [Czechoslovak Math. J. 66 (2016)] and Li, Liu and Peng [Linear Multilinear Algebra 66 (2018)]. Moreover, we shall prove a stability result for graphs being $k$-Hamiltonian, which can be viewed as a complement of two recent results of F{u}redi, Kostochka and Luo [Discrete Math. 340 (2017)] and [Discrete Math. 342 (2019)].