ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrated community occupancy models: A framework to assess occurrence and biodiversity dynamics using multiple data sources

143   0   0.0 ( 0 )
 نشر من قبل Jeffrey Doser
 تاريخ النشر 2021
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The occurrence and distributions of wildlife populations and communities are shifting as a result of global changes. To evaluate whether these shifts are negatively impacting biodiversity processes, it is critical to monitor the status, trends, and effects of environmental variables on entire communities. However, modeling the dynamics of multiple species simultaneously can require large amounts of diverse data, and few modeling approaches exist to simultaneously provide species and community level inferences. We present an integrated community occupancy model (ICOM) that unites principles of data integration and hierarchical community modeling in a single framework to provide inferences on species-specific and community occurrence dynamics using multiple data sources. We use simulations to compare the ICOM to previously developed hierarchical community occupancy models and single species integrated distribution models. We then apply our model to assess the occurrence and biodiversity dynamics of foliage-gleaning birds in the White Mountain National Forest in the northeastern USA from 2010-2018 using three independent data sources. Simulations reveal that integrating multiple data sources in the ICOM increased precision and accuracy of species and community level inferences compared to single data source models, although benefits of integration were dependent on data source quality (e.g., amount of replication). Compared to single species models, the ICOM yielded more precise species-level estimates. Within our case study, the ICOM had the highest out-of-sample predictive performance compared to single species models and models that used only a subset of the three data sources. The ICOM offers an attractive approach to estimate species and biodiversity dynamics, which is additionally valuable to inform management objectives of both individual species and their broader communities.



قيم البحث

اقرأ أيضاً

We demonstrate the ability of statistical data assimilation to identify the measurements required for accurate state and parameter estimation in an epidemiological model for the novel coronavirus disease COVID-19. Our context is an effort to inform p olicy regarding social behavior, to mitigate strain on hospital capacity. The model unknowns are taken to be: the time-varying transmission rate, the fraction of exposed cases that require hospitalization, and the time-varying detection probabilities of new asymptomatic and symptomatic cases. In simulations, we obtain accurate estimates of undetected (that is, unmeasured) infectious populations, by measuring the detected cases together with the recovered and dead - and without assumed knowledge of the detection rates. Given a noiseless measurement of the recovered population, excellent estimates of all quantities are obtained using a temporal baseline of 101 days, with the exception of the time-varying transmission rate at times prior to the implementation of social distancing. With low noise added to the recovered population, accurate state estimates require a lengthening of the temporal baseline of measurements. Estimates of all parameters are sensitive to the contamination, highlighting the need for accurate and uniform methods of reporting. The aim of this paper is to exemplify the power of SDA to determine what properties of measurements will yield estimates of unknown parameters to a desired precision, in a model with the complexity required to capture important features of the COVID-19 pandemic.
Big imaging data is becoming more prominent in brain sciences across spatiotemporal scales and phylogenies. We have developed a computational ecosystem that enables storage, visualization, and analysis of these data in the cloud, thusfar spanning 20+ publications and 100+ terabytes including nanoscale ultrastructure, microscale synaptogenetic diversity, and mesoscale whole brain connectivity, making NeuroData the largest and most diverse open repository of brain data.
Population dynamics of a competitive two-species system under the influence of random events are analyzed and expressions for the steady-state population mean, fluctuations, and cross-correlation of the two species are presented. It is shown that ran dom events cause the population mean of each specie to make smooth transition from far above to far below of its growth rate threshold. At the same time, the population mean of the weaker specie never reaches the extinction point. It is also shown that, as a result of competition, the relative population fluctuations do not die out as the growth rates of both species are raised far above their respective thresholds. This behavior is most remarkable at the maximum competition point where the weaker species population statistics becomes completely chaotic regardless of how far its growth rate in raised.
A molecular dynamics calculation of the amino acid polar requirement is presented and used to score the canonical genetic code. Monte Carlo simulation shows that this computational polar requirement has been optimized by the canonical genetic code mo re than any previously-known measure. These results strongly support the idea that the genetic code evolved from a communal state of life prior to the root of the modern ribosomal tree of life.
Identifying directed interactions between species from time series of their population densities has many uses in ecology. This key statistical task is equivalent to causal time series inference, which connects to the Granger causality (GC) concept: $x$ causes $y$ if $x$ improves the prediction of $y$ in a dynamic model. However, the entangled nature of nonlinear ecological systems has led to question the appropriateness of Granger causality, especially in its classical linear Multivariate AutoRegressive (MAR) model form. Convergent-cross mapping (CCM), a nonparametric method developed for deterministic dynamical systems, has been suggested as an alternative. Here, we show that linear GC and CCM are able to uncover interactions with surprisingly similar performance, for predator-prey cycles, 2-species deterministic (chaotic) or stochastic competition, as well as 10- and 20-species interaction networks. There is no correspondence between the degree of nonlinearity of the dynamics and which method performs best. Our results therefore imply that Granger causality, even in its linear MAR($p$) formulation, is a valid method for inferring interactions in nonlinear ecological networks; using GC or CCM (or both) can instead be decided based on the aims and specifics of the analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا