Linearization of Virasoro symmetries associated with semisimple Frobenius manifolds


الملخص بالإنكليزية

For any semisimple Frobenius manifold, we prove that a tau-symmetric bihamiltonian deformation of its Principal Hierarchy admits an infinite family of linearizable Virasoro symmetries if and only if all the central invariants of the corresponding deformation of the bihamiltonian structure are equal to $frac{1}{24}$. As an important application of this result, we prove that the Dubrovin-Zhang hierarchy associated with the semisimple Frobenius manifold possesses a bihamiltonian structure which can be represented in terms of differential polynomials.

تحميل البحث