ﻻ يوجد ملخص باللغة العربية
As a kind of new expression elements, Internet memes are popular and extensively used in online chatting scenarios since they manage to make dialogues vivid, moving, and interesting. However, most current dialogue researches focus on text-only dialogue tasks. In this paper, we propose a new task named as textbf{M}eme incorporated textbf{O}pen-domain textbf{D}ialogue (MOD). Compared to previous dialogue tasks, MOD is much more challenging since it requires the model to understand the multimodal elements as well as the emotions behind them. To facilitate the MOD research, we construct a large-scale open-domain multimodal dialogue dataset incorporating abundant Internet memes into utterances. The dataset consists of $sim$45K Chinese conversations with $sim$606K utterances. Each conversation contains about $13$ utterances with about $4$ Internet memes on average and each utterance equipped with an Internet meme is annotated with the corresponding emotion. In addition, we present a simple and effective method, which utilizes a unified generation network to solve the MOD task. Experimental results demonstrate that our method trained on the proposed corpus is able to achieve expressive communication including texts and memes. The corpus and models have been publicly available at https://github.com/lizekang/DSTC10-MOD.
In this paper, we present GEM as a General Evaluation benchmark for Multimodal tasks. Different from existing datasets such as GLUE, SuperGLUE, XGLUE and XTREME that mainly focus on natural language tasks, GEM is a large-scale vision-language benchma
Current news datasets merely focus on text features on the news and rarely leverage the feature of images, excluding numerous essential features for news classification. In this paper, we propose a new dataset, N15News, which is generated from New Yo
We introduce WikiLingua, a large-scale, multilingual dataset for the evaluation of crosslingual abstractive summarization systems. We extract article and summary pairs in 18 languages from WikiHow, a high quality, collaborative resource of how-to gui
While online conversations can cover a vast amount of information in many different formats, abstractive text summarization has primarily focused on modeling solely news articles. This research gap is due, in part, to the lack of standardized dataset
The advancements of neural dialogue generation models show promising results on modeling short-text conversations. However, training such models usually needs a large-scale high-quality dialogue corpus, which is hard to access. In this paper, we pres