ترغب بنشر مسار تعليمي؟ اضغط هنا

Scanning Fabry--Perot Interferometer of the 6-m SAO RAS Telescope

173   0   0.0 ( 0 )
 نشر من قبل Alexei Moiseev
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.V. Moiseev




اسأل ChatGPT حول البحث

The scanning Fabry-Perot interferometer (FPI) - is the oldest method of optical 3D spectroscopy. It is still in use because of the high spectral resolution it provides over a large field of view. The history of the application of this method for the study of extended ob jects (nebulae and galaxies) and the technique of data reduction and analysis are discussed. The paper focuses on the performing observations with the scanning FPI on the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS). The instrument is currently used as a part of the SCORPIO-2 multimode focal reducer. The results of studies of various galactic and extragalactic objects with the scanning FPI on the 6-m telescope - star-forming regions and young stellar objects, spiral, ring, dwarf and interacting galaxies, ionization cones of active galactic nuclei, galactic winds, etc. are briefly discussed. Further prospects for research with the scanning FPI of the SAO RAS are discussed.



قيم البحث

اقرأ أيضاً

163 - A. V. Moiseev 2015
We describe the recent modifications to the data reduction technique for observations acquired with the scanning Fabry-Perot interferometer (FPI) mounted on the 6-m telescope of the Special Astrophysical Observatory that allow the wavelength scale to be correctly computed in the case of large mutual offsets of studied objects in interferograms. Also the parameters of the scanning FPIs used in the SCORPIO-2 multimode focal reducer are considered.
We describe a software package used at the Special Astrophysical Observatory of the Russian Academy of Sciences to reduce and analyze the data obtained with the Fabry-Perot scanning interferometer. We already described most of the algorithms employed in our earlier Paper I (Moiseev, 2002). In this paper we focus on extra procedures required in the case of the use of a high-resolution Fabry-Perot interferometer: removal of ghosts and measurement of the velocity dispersion of ionized gas in galactic and extragalactic objects.
214 - C. Kuckein 2017
A huge amount of data has been acquired with the GREGOR Fabry-Perot Interferometer (GFPI), large-format facility cameras, and since 2016 with the High-resolution Fast Imager (HiFI). These data are processed in standardized procedures with the aim of providing science-ready data for the solar physics community. For this purpose, we have developed a user-friendly data reduction pipeline called sTools based on the Interactive Data Language (IDL) and licensed under creative commons license. The pipeline delivers reduced and image-reconstructed data with a minimum of user interaction. Furthermore, quick-look data are generated as well as a webpage with an overview of the observations and their statistics. All the processed data are stored online at the GREGOR GFPI and HiFI data archive of the Leibniz Institute for Astrophysics Potsdam (AIP). The principles of the pipeline are presented together with selected high-resolution spectral scans and images processed with sTools.
68 - A.V. Ivanovaa 2021
A detailed study of comets active at large heliocentric distances (greater than 4 au) which enter the Solar System for the first time and are composed of matter in its elementary, unprocessed state, would help in our understanding of the history and evolution of the Solar System. In particular, contemporary giant planet formation models require the presence of accretion of volatile elements such as neon, argon, krypton, xenon and others, which initially could not survive at the distances where giant planets were formed. Nevertheless, the volatile components could be effectively delivered by the Kuiper-belt and Oort-cloud bodies, which were formed at temperatures below 30 K. This review is dedicated to the results of a multi-year comprehensive study of small bodies of the Solar System showing a comet-like activity at large heliocentric distances. The data were obtained from observations with the 6-meter telescope of SAO RAS equipped with multi-mode focal reducers SCORPIO and SCORPIO-2.
An all-fiber, micro-pulse and eye-safe high spectral resolution wind lidar (HSRWL) at 1550nm is proposed and demonstrated by using a pair of upconversion single-photon detectors and a fiber Fabry-Perot scanning interferometer (FFP-SI). In order to im prove the optical detection efficiency, both the transmission spectrum and the reflection spectrum of the FFP-SI are used for spectral analyses of the aerosol backscatter and the reference laser pulse. The reference signal is tapped from the outgoing laser and served as a zero velocity indicator. The Doppler shift is retrieved from a frequency response function Q, which is defined as the ratio of difference of the transmitted signal and the reflected signal to their sum. Taking advantages of high signal-to-noise ratio of the detectors and high spectral resolution of the FFP-SI, the Q spectra of the aerosol backscatter are reconstructed along the line-of-sight (LOS) of the telescope. By applying a least squares fit procedure to the measured Q spectra, the center frequencies and the bandwidths are obtained simultaneously. And then the Doppler shifts are determined relative to the center frequency of the reference signal. To eliminate the influence of temperature fluctuations on the FFP-SI, the FFP-SI is cased in a chamber with temperature stability of 0.001 during the measurement. Continuous LOS wind observations are carried out on two days at Hefei (31.843 N, 117.265 E), China. In the meantime, LOS wind measurements from the HSRWL show good agreement with the results from an ultrasonic wind sensor (Vaisala windcap WMT52). Due to the computational expensive of the convolution operation of the Q function, an empirical method is adopted to evaluate the quality of the measurements. The standard deviation of the wind speed is 0.76 m/s at the 1.8 km. The standard deviation of the retrieved bandwidth variation is 2.07 MHz at the 1.8 km.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا