ﻻ يوجد ملخص باللغة العربية
The COVID-19 pandemic is one of the most challenging healthcare crises during the 21st century. As the virus continues to spread on a global scale, the majority of efforts have been on the development of vaccines and the mass immunization of the public. While the daily case numbers were following a decreasing trend, the emergent of new virus mutations and variants still pose a significant threat. As economies start recovering and societies start opening up with people going back into office buildings, schools, and malls, we still need to have the ability to detect and minimize the spread of COVID-19. Individuals with COVID-19 may show multiple symptoms such as cough, fever, and shortness of breath. Many of the existing detection techniques focus on symptoms having the same equal importance. However, it has been shown that some symptoms are more prevalent than others. In this paper, we present a multimodal method to predict COVID-19 by incorporating existing deep learning classifiers using convolutional neural networks and our novel probability-based weighting function that considers the prevalence of each symptom. The experiments were performed on an existing dataset with respect to the three considered modes of coughs, fever, and shortness of breath. The results show considerable improvements in the detection of COVID-19 using our weighting function when compared to an equal weighting function.
CT imaging is crucial for diagnosis, assessment and staging COVID-19 infection. Follow-up scans every 3-5 days are often recommended for disease progression. It has been reported that bilateral and peripheral ground glass opacification (GGO) with or
Since the breakout of coronavirus disease (COVID-19), the computer-aided diagnosis has become a necessity to prevent the spread of the virus. Detecting COVID-19 at an early stage is essential to reduce the mortality risk of the patients. In this stud
SARS-CoV2, which causes coronavirus disease (COVID-19) is continuing to spread globally and has become a pandemic. People have lost their lives due to the virus and the lack of counter measures in place. Given the increasing caseload and uncertainty
As the digital news industry becomes the main channel of information dissemination, the adverse impact of fake news is explosively magnified. The credibility of a news report should not be considered in isolation. Rather, previously published news ar
Medical diagnostic image analysis (e.g., CT scan or X-Ray) using machine learning is an efficient and accurate way to detect COVID-19 infections. However, sharing diagnostic images across medical institutions is usually not allowed due to the concern