ترغب بنشر مسار تعليمي؟ اضغط هنا

Data science and Machine learning in the Clouds: A Perspective for the Future

112   0   0.0 ( 0 )
 نشر من قبل Hrishav Bakul Barua
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As we are fast approaching the beginning of a paradigm shift in the field of science, Data driven science (the so called fourth science paradigm) is going to be the driving force in research and innovation. From medicine to biodiversity and astronomy to geology, all these terms are somehow going to be affected by this paradigm shift. The huge amount of data to be processed under this new paradigm will be a major concern in the future and one will strongly require cloud based services in all the aspects of these computations (from storage to compute and other services). Another aspect will be energy consumption and performance of prediction jobs and tasks within such a scientific paradigm which will change the way one sees computation. Data science has heavily impacted or rather triggered the emergence of Machine Learning, Signal/Image/Video processing related algorithms, Artificial intelligence, Robotics, health informatics, geoinformatics, and many more such areas of interest. Hence, we envisage an era where Data science can deliver its promises with the help of the existing cloud based platforms and services with the addition of new services. In this article, we discuss about data driven science and Machine learning and how they are going to be linked through cloud based services in the future. It also discusses the rise of paradigms like approximate computing, quantum computing and many more in recent times and their applicability in big data processing, data science, analytics, prediction and machine learning in the cloud environments.



قيم البحث

اقرأ أيضاً

Cloud computing has rapidly emerged as model for delivering Internet-based utility computing services. In cloud computing, Infrastructure as a Service (IaaS) is one of the most important and rapidly growing fields. Cloud providers provide users/machi nes resources such as virtual machines, raw (block) storage, firewalls, load balancers, and network devices in this service model. One of the most important aspects of cloud computing for IaaS is resource management. Scalability, quality of service, optimum utility, reduced overheads, increased throughput, reduced latency, specialised environment, cost effectiveness, and a streamlined interface are some of the advantages of resource management for IaaS in cloud computing. Traditionally, resource management has been done through static policies, which impose certain limitations in various dynamic scenarios, prompting cloud service providers to adopt data-driven, machine-learning-based approaches. Machine learning is being used to handle a variety of resource management tasks, including workload estimation, task scheduling, VM consolidation, resource optimization, and energy optimization, among others. This paper provides a detailed review of challenges in ML-based resource management in current research, as well as current approaches to resolve these challenges, as well as their advantages and limitations. Finally, we propose potential future research directions based on identified challenges and limitations in current research.
In an effort to overcome the data deluge in computational biology and bioinformatics and to facilitate bioinformatics research in the era of big data, we identify some of the most influential algorithms that have been widely used in the bioinformatic s community. These top data mining and machine learning algorithms cover classification, clustering, regression, graphical model-based learning, and dimensionality reduction. The goal of this study is to guide the focus of scalable computing experts in the endeavor of applying new storage and scalable computation designs to bioinformatics algorithms that merit their attention most, following the engineering maxim of optimize the common case.
247 - Mingzhen Li , Yi Liu , Xiaoyan Liu 2020
The difficulty of deploying various deep learning (DL) models on diverse DL hardware has boosted the research and development of DL compilers in the community. Several DL compilers have been proposed from both industry and academia such as Tensorflow XLA and TVM. Similarly, the DL compilers take the DL models described in different DL frameworks as input, and then generate optimized codes for diverse DL hardware as output. However, none of the existing survey has analyzed the unique design architecture of the DL compilers comprehensively. In this paper, we perform a comprehensive survey of existing DL compilers by dissecting the commonly adopted design in details, with emphasis on the DL oriented multi-level IRs, and frontend/backend optimizations. Specifically, we provide a comprehensive comparison among existing DL compilers from various aspects. In addition, we present detailed analysis on the design of multi-level IRs and illustrate the commonly adopted optimization techniques. Finally, several insights are highlighted as the potential research directions of DL compiler. This is the first survey paper focusing on the design architecture of DL compilers, which we hope can pave the road for future research towards DL compiler.
Empirical analysis is often the first step towards the birth of a conjecture. This is the case of the Birch-Swinnerton-Dyer (BSD) Conjecture describing the rational points on an elliptic curve, one of the most celebrated unsolved problems in mathemat ics. Here we extend the original empirical approach, to the analysis of the Cremona database of quantities relevant to BSD, inspecting more than 2.5 million elliptic curves by means of the latest techniques in data science, machine-learning and topological data analysis. Key quantities such as rank, Weierstrass coefficients, period, conductor, Tamagawa number, regulator and order of the Tate-Shafarevich group give rise to a high-dimensional point-cloud whose statistical properties we investigate. We reveal patterns and distributions in the rank versus Weierstrass coefficients, as well as the Beta distribution of the BSD ratio of the quantities. Via gradient boosted trees, machine learning is applied in finding inter-correlation amongst the various quantities. We anticipate that our approach will spark further research on the statistical properties of large datasets in Number Theory and more in general in pure Mathematics.
Recent trend towards increasing large machine learning models require both training and inference tasks to be distributed. Considering the huge cost of training these models, it is imperative to unlock optimizations in computation and communication t o obtain best performance. However, current logical separation between computation and communication kernels in deep learning frameworks misses the optimization opportunities across such barrier. Breaking this abstraction with a holistic consideration can provide many optimizations to provide performance improvements in distributed workloads. Manually applying these optimizations needs modifications in underlying computation and communication libraries for each scenario, which is time consuming and error-prone. Therefore, we present CoCoNeT, with a DSL to express a program with both computation and communication. CoCoNeT contains several machine learning aware transformations to optimize a program and a compiler to generate high performance kernels. Providing both computation and communication as first class constructs allows users to work on a high-level abstraction and apply powerful optimizations, such as fusion or overlapping of communication and computation. CoCoNeT enables us to optimize data-, model-and pipeline-parallel workloads in large language models with only a few lines of code. Experiments show CoCoNeT significantly outperforms state-of-the-art distributed machine learning implementations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا