ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-Lingual Training with Dense Retrieval for Document Retrieval

118   0   0.0 ( 0 )
 نشر من قبل Peng Shi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Dense retrieval has shown great success in passage ranking in English. However, its effectiveness in document retrieval for non-English languages remains unexplored due to the limitation in training resources. In this work, we explore different transfer techniques for document ranking from English annotations to multiple non-English languages. Our experiments on the test collections in six languages (Chinese, Arabic, French, Hindi, Bengali, Spanish) from diverse language families reveal that zero-shot model-based transfer using mBERT improves the search quality in non-English mono-lingual retrieval. Also, we find that weakly-supervised target language transfer yields competitive performances against the generation-based target language transfer that requires external translators and query generators.



قيم البحث

اقرأ أيضاً

Many information retrieval algorithms rely on the notion of a good distance that allows to efficiently compare objects of different nature. Recently, a new promising metric called Word Movers Distance was proposed to measure the divergence between te xt passages. In this paper, we demonstrate that this metric can be extended to incorporate term-weighting schemes and provide more accurate and computationally efficient matching between documents using entropic regularization. We evaluate the benefits of both extensions in the task of cross-lingual document retrieval (CLDR). Our experimental results on eight CLDR problems suggest that the proposed methods achieve remarkable improvements in terms of Mean Reciprocal Rank compared to several baselines.
We present Mr. TyDi, a multi-lingual benchmark dataset for mono-lingual retrieval in eleven typologically diverse languages, designed to evaluate ranking with learned dense representations. The goal of this resource is to spur research in dense retri eval techniques in non-English languages, motivated by recent observations that existing techniques for representation learning perform poorly when applied to out-of-distribution data. As a starting point, we provide zero-shot baselines for this new dataset based on a multi-lingual adaptation of DPR that we call mDPR. Experiments show that although the effectiveness of mDPR is much lower than BM25, dense representations nevertheless appear to provide valuable relevance signals, improving BM25 results in sparse-dense hybrids. In addition to analyses of our results, we also discuss future challenges and present a research agenda in multi-lingual dense retrieval. Mr. TyDi can be downloaded at https://github.com/castorini/mr.tydi.
Pre-training on larger datasets with ever increasing model size is now a proven recipe for increased performance across almost all NLP tasks. A notable exception is information retrieval, where additional pre-training has so far failed to produce con vincing results. We show that, with the right pre-training setup, this barrier can be overcome. We demonstrate this by pre-training large bi-encoder models on 1) a recently released set of 65 million synthetically generated questions, and 2) 200 million post-comment pairs from a preexisting dataset of Reddit conversations made available by pushshift.io. We evaluate on a set of information retrieval and dialogue retrieval benchmarks, showing substantial improvements over supervised baselines.
As a crucial role in cross-language information retrieval (CLIR), query translation has three main challenges: 1) the adequacy of translation; 2) the lack of in-domain parallel training data; and 3) the requisite of low latency. To this end, existing CLIR systems mainly exploit statistical-based machine translation (SMT) rather than the advanced neural machine translation (NMT), limiting the further improvements on both translation and retrieval quality. In this paper, we investigate how to exploit neural query translation model into CLIR system. Specifically, we propose a novel data augmentation method that extracts query translation pairs according to user clickthrough data, thus to alleviate the problem of domain-adaptation in NMT. Then, we introduce an asynchronous strategy which is able to leverage the advantages of the real-time in SMT and the veracity in NMT. Experimental results reveal that the proposed approach yields better retrieval quality than strong baselines and can be well applied into a real-world CLIR system, i.e. Aliexpress e-Commerce search engine. Readers can examine and test their cases on our website: https://aliexpress.com .
We present CORA, a Cross-lingual Open-Retrieval Answer Generation model that can answer questions across many languages even when language-specific annotated data or knowledge sources are unavailable. We introduce a new dense passage retrieval algori thm that is trained to retrieve documents across languages for a question. Combined with a multilingual autoregressive generation model, CORA answers directly in the target language without any translation or in-language retrieval modules as used in prior work. We propose an iterative training method that automatically extends annotated data available only in high-resource languages to low-resource ones. Our results show that CORA substantially outperforms the previous state of the art on multilingual open question answering benchmarks across 26 languages, 9 of which are unseen during training. Our analyses show the significance of cross-lingual retrieval and generation in many languages, particularly under low-resource settings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا