ﻻ يوجد ملخص باللغة العربية
This report is concerned with the relevance of the microscopic rules, that implement individual neuronal activation, in determining the collective dynamics, under variations of the network topology. To fix ideas we study the dynamics of two cellular automaton models, commonly used, rather in-distinctively, as the building blocks of large scale neuronal networks. One model, due to Greenberg & Hastings, (GH) can be described by evolution equations mimicking an integrate-and-fire process, while the other model, due to Kinouchi & Copelli, (KC) represents an abstract branching process, where a single active neuron activates a given number of postsynaptic neurons according to a prescribed activity branching ratio. Despite the apparent similarity between the local neuronal dynamics of the two models, it is shown that they exhibit very different collective dynamics as a function of the network topology. The GH model shows qualitatively different dynamical regimes as the network topology is varied, including transients to a ground (inactive) state, continuous and discontinuous dynamical phase transitions. In contrast, the KC model only exhibits a continuous phase transition, independently of the network topology. These results highlight the importance of paying attention to the microscopic rules chosen to model the inter-neuronal interactions in large scale numerical simulations, in particular when the network topology is far from a mean field description. One such case is the extensive work being done in the context of the Human Connectome, where a wide variety of types of models are being used to understand the brain collective dynamics.
We investigate the dynamics of two models of biological networks with purely suppressive interactions between the units; species interacting via niche competition and neurons via inhibitory synaptic coupling. In both of these cases, power-law scaling
Learning in neural networks poses peculiar challenges when using discretized rather then continuous synaptic states. The choice of discrete synapses is motivated by biological reasoning and experiments, and possibly by hardware implementation conside
We investigated the influence of efficacy of synaptic interaction on firing synchronization in excitatory neuronal networks. We found spike death phenomena, namely, the state of neurons transits from limit cycle to fixed point or transient state. The
Cortical neural circuits display highly irregular spiking in individual neurons but variably sized collective firing, oscillations and critical avalanches at the population level, all of which have functional importance for information processing. Th
We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stab