ترغب بنشر مسار تعليمي؟ اضغط هنا

The Study of X-Ray Flux Variability of M87

140   0   0.0 ( 0 )
 نشر من قبل Ryo Imazawa
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We searched for a short-term X-ray variability of the M87 core and jet from archival X-ray data with long exposure data taken by the Suzaku, Chandra, and NuSTAR telescopes. We found the intraday variability for the Suzaku data obtained in 2006, and for the Chandra core obtained in 2017. The intraday variability suggested a minute emission region of about the size of Schwartzshild radius of the M87 supermassive black hole. Suzaku could not resolve a core and HST-1; however, in 2006, HST-1 was much brighter than the core, and thus, the variability is likely due to the HST-1. Since the photon index in 2006 was 2.38, the emission was possibly synchrotron emission from the local shock region in the HST-1, indicating that the particle acceleration of TeV electrons occurred far away (~100 pc) from the core. Assuming the fading time to be equal to the synchrotron cooling time, the magnetic field is constrained to be B ~1.94 ${delta}^{1/3}$ mG. Moreover, the photon index of the core in 2017 was approximately 1.96; thus, the possible emission was from the radiative inefficiency accretion flow of the core or inverse Compton scattering in the jet. Intraday time variability prefers the latter possibility.



قيم البحث

اقرأ أيضاً

392 - D. L. Foster 2013
We report on our search for very-long-term variability (weeks to years) in X-ray binaries (XRBs) in the giant elliptical galaxy M87. We have used archival Chandra imaging observations to characterise the long-term variability of 8 of the brightest me mbers of the XRB population in M87. The peak brightness of some of the sources exceeded the ultra luminous X-ray source (ULX) threshold luminosity of ~ 10^{39} erg/s, and one source could exhibit dips or eclipses. We show that for one source, if it has similar modulation amplitude as in SS433, then period recoverability analysis on the current data would detect periodic modulations, but only for a narrow range of periods less than 120 days. We conclude that a dedicated monitoring campaign, with appropriately defined sampling, is essential if we are to investigate properly the nature of the long-term modulations such as those seen in Galactic sources.
We present the results of timing and spectral analysis of the blazar H 2356-309 using XMM-Newton observations. This blazar is observed during 13 June 2005-24 December 2013 in total nine observations. Five of the observations show moderate flux variab ility with amplitude 1.7-2.2 percent. We search for the intra-day variability timescales in these five light curves, but did not find in any of them. The fractional variability amplitude is generally lower in the soft bands than in the hard bands, which is attributed to the energy dependent synchrotron emission. Using the hardness ratio analysis, we search for the X-ray spectral variability along with flux variability in this source. However, we did not find any significant spectral variability on intra-day timescales. We also investigate the X-ray spectral curvature of blazar H 2356-309 and found that six of our observations are well described by the log parabolic model with alpha=1.99-2.15 and beta=0.03-0.18. Three of our observations are well described by power law model. The break energy of the X-ray spectra varies between 1.97-2.31 keV. We investigate the correlation between various parameters that are derived from log parabolic model and their implications are discussed.
Chandra HRC observations are investigated for evidence of proper motion and brightness changes in the X-ray jet of the nearby radio galaxy M87. Using images spanning 5 yr, proper motion is measured in the X-ray knot HST-1, with a superluminal apparen t speed of $6.3 pm 0.4 c$, or $24.1 pm 1.6rm mas yr^{-1}$, and in Knot D, with a speed of $2.4pm 0.6c$. Upper limits are placed on the speeds of the remaining jet features. The X-ray knot speeds are in excellent agreement with existing measurements in the radio, optical, and ultraviolet. Comparing the X-ray results with images from the Hubble Space Telescope indicates that the X-ray and optical/UV emitting regions co-move. The X-ray knots also vary by up to 73% in brightness, whereas there is no evidence of brightness changes in the optical/UV. Using the synchrotron cooling models, we determine lower limits on magnetic field strengths of $sim 420~mu rm G$ and $sim 230~mu rm G$ for HST-1 and Knot A, respectively, consistent with estimates of the equipartition fields. Together, these results lend strong support to the synchrotron cooling model for Knot HST-1, which requires that its superluminal motion reflects the speed of the relativistic bulk flow in the jet.
107 - Alok C. Gupta 2020
We reviewed X-ray flux and spectral variability properties studied to date by various X-ray satellites for Mrk 421 and PKS 2155-304, which are TeV emitting blazars. Mrk 421 and PKS 2155-304 are the most X-ray luminous blazars in the northern and sout hern hemispheres, respectively. Blazars show flux and spectral variabilities in the complete electromagnetic spectrum on diverse timescales ranging from a few minutes to hours, days, weeks, months and even several years. The flux and spectral variability on different timescales can be used to constrain the size of the emitting region, estimate the super massive black hole mass, find the dominant emission mechanism in the close vicinity of the super massive black hole, search for quasi-periodic oscillations in time series data and~several other physical parameters of blazars. Flux and spectral variability is also a dominant tool to explain jet as well as disk emission from blazars at different epochs of observations.
AX J0049.4-7323 is a Be/X-ray binary in the Small Magellanic Cloud hosting a ~750 s pulsar which has been observed over the last ~17 years by several X-ray telescopes. Despite numerous observations, little is known about its X-ray behaviour. Therefor e, we coherently analysed archival Swift, Chandra, XMM-Newton, RXTE, and INTEGRAL data, and we compared them with already published ASCA data, to study its X-ray long-term spectral and flux variability. AX J0049.4-7323 shows a high X-ray variability, spanning more than three orders of magnitudes, from L ~ 1.6E37 erg/s (0.3-8 keV, d=62 kpc) down to L ~ 8E33 erg/s. RXTE, Chandra, Swift, and ASCA observed, in addition to the expected enhancement of X-ray luminosity at periastron, flux variations by a factor of ~ 270 with peak luminosities of ~2.1E36 erg/s far from periastron. These properties are difficult to reconcile with the typical long-term variability of Be/XRBs, traditionally interpreted in terms of type I and type II outbursts. The study of AX J0049.4-7323 is complemented with a spectral analysis of Swift, Chandra, and XMM-Newton data which showed a softening trend when the emission becomes fainter, and an analysis of optical/UV data collected by the UVOT telescope on board Swift. In addition, we measured a secular spin-up rate of $dot{P}=(-3.00pm0.12)times 10^{-3}$ s day$^{-1}$, which suggests that the pulsar has not yet achieved its equilibrium period. Assuming spherical accretion, we estimated an upper limit for the magnetic field strength of the pulsar of ~3E12 G.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا