ﻻ يوجد ملخص باللغة العربية
Normalized correlation functions provide expedient means for determining the photon-number properties of light. These higher-order moments, also called the normalized factorial moments of photon number, can be utilized both in the fast state classification and in-depth state characterization. Further, non-classicality criteria have been derived based on their properties. Luckily, the measurement of the normalized higher-order moments is often loss-independent making their observation with lossy optical setups and imperfect detectors experimentally appealing. The normalized higher-order moments can for example be extracted from the photon-number distribution measured with a true photon-number-resolving detector or accessed directly via manifold coincidence counting in the spirit of the Hanbury Brown and Twiss experiment. Alternatively, they can be inferred via homodyne detection. Here, we provide an overview of different kind of state classification and characterization tasks that take use of normalized higher-order moments and consider different aspects in measuring them with free-traveling light.
Two-color second-order correlations of the light scattered near-resonantly by a quantum dot were measured by means of spectrally-filtered coincidence detection. The effects of filter frequency and bandwidth were studied under monochromatic laser exci
We review the continuous monitoring of a qubit through its spontaneous emission, at an introductory level. Contemporary experiments have been able to collect the fluorescence of an artificial atom in a cavity and transmission line, and then make meas
We report on the higher-order photon correlations of a high-$beta$ nanolaser under pulsed excitation at room temperature. Using a multiplexed four-element superconducting single photon detector we measured g$^{(n)}(vec{0})$ with $n$=2,3,4. All orders
We report the experimental measurement of bipartite quantum correlations of an unknown two-qubit state. Using a liquid state Nuclear Magnetic Resonance (NMR) setup and employing geometric discord, we evaluate the quantum correlations of a state witho
In this paper we make an extensive description of quantum non-locality, one of the most intriguing and fascinating facets of quantum mechanics. After a general presentation of several studies on this subject, we consider if quantum non-locality, and