Multilabel learning is an important topic in machine learning research. Evaluating models in multilabel settings requires specific cross validation methods designed for multilabel data. In this article, we show a weakness in an evaluation metric widely used in literature and we present improv
By combining various cancer cell line (CCL) drug screening panels, the size of the data has grown significantly to begin understanding how advances in deep learning can advance drug response predictions. In this paper we train >35,000 neural network
models, sweeping over common featurization techniques. We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features. We found the inclusion of single nucleotide polymorphisms (SNPs) coded as count matrices improved model performance significantly, and no substantial difference in model performance with respect to molecular featurization between the common open source MOrdred descriptors and Dragon7 descriptors. Alongside this analysis, we outline data integration between CCL screening datasets and present evidence that new metrics and imbalanced data techniques, as well as advances in data standardization, need to be developed.
As machine learning has become increasingly applied to medical imaging data, noise in training labels has emerged as an important challenge. Variability in diagnosis of medical images is well established; in addition, variability in training and atte
ntion to task among medical labelers may exacerbate this issue. Methods for identifying and mitigating the impact of low quality labels have been studied, but are not well characterized in medical imaging tasks. For instance, Noisy Cross-Validation splits the training data into halves, and has been shown to identify low-quality labels in computer vision tasks; but it has not been applied to medical imaging tasks specifically. In this work we introduce Stratified Noisy Cross-Validation (SNCV), an extension of noisy cross validation. SNCV can provide estimates of confidence in model predictions by assigning a quality score to each example; stratify labels to handle class imbalance; and identify likely low-quality labels to analyze the causes. We assess performance of SNCV on diagnosis of glaucoma suspect risk from retinal fundus photographs, a clinically important yet nuanced labeling task. Using training data from a previously-published deep learning model, we compute a continuous quality score (QS) for each training example. We relabel 1,277 low-QS examples using a trained glaucoma specialist; the new labels agree with the SNCV prediction over the initial label >85% of the time, indicating that low-QS examples mostly reflect labeler errors. We then quantify the impact of training with only high-QS labels, showing that strong model performance may be obtained with many fewer examples. By applying the method to randomly sub-sampled training dataset, we show that our method can reduce labelling burden by approximately 50% while achieving model performance non-inferior to using the full dataset on multiple held-out test sets.
Motivation: Histone modifications are among the most important factors that control gene regulation. Computational methods that predict gene expression from histone modification signals are highly desirable for understanding their combinatorial effec
ts in gene regulation. This knowledge can help in developing epigenetic drugs for diseases like cancer. Previous studies for quantifying the relationship between histone modifications and gene expression levels either failed to capture combinatorial effects or relied on multiple methods that separate predictions and combinatorial analysis. This paper develops a unified discriminative framework using a deep convolutional neural network to classify gene expression using histone modification data as input. Our system, called DeepChrome, allows automatic extraction of complex interactions among important features. To simultaneously visualize the combinatorial interactions among histone modifications, we propose a novel optimization-based technique that generates feature pattern maps from the learnt deep model. This provides an intuitive description of underlying epigenetic mechanisms that regulate genes. Results: We show that DeepChrome outperforms state-of-the-art models like Support Vector Machines and Random Forests for gene expression classification task on 56 different cell-types from REMC database. The output of our visualization technique not only validates the previous observations but also allows novel insights about combinatorial interactions among histone modification marks, some of which have recently been observed by experimental studies.
Isotonic regression is a nonparametric approach for fitting monotonic models to data that has been widely studied from both theoretical and practical perspectives. However, this approach encounters computational and statistical overfitting issues in
higher dimensions. To address both concerns, we present an algorithm, which we term Isotonic Recursive Partitioning (IRP), for isotonic regression based on recursively partitioning the covariate space through solution of progressively smaller best cut subproblems. This creates a regularized sequence of isotonic models of increasing model complexity that converges to the global isotonic regression solution. The models along the sequence are often more accurate than the unregularized isotonic regression model because of the complexity control they offer. We quantify this complexity control through estimation of degrees of freedom along the path. Success of the regularized models in prediction and IRPs favorable computational properties are demonstrated through a series of simulated and real data experiments. We discuss application of IRP to the problem of searching for gene--gene interactions and epistasis, and demonstrate it on data from genome-wide association studies of three common diseases.
Gene mutation prediction in hepatocellular carcinoma (HCC) is of great diagnostic and prognostic value for personalized treatments and precision medicine. In this paper, we tackle this problem with multi-instance multi-label learning to address the d
ifficulties on label correlations, label representations, etc. Furthermore, an effective oversampling strategy is applied for data imbalance. Experimental results have shown the superiority of the proposed approach.
Henri Tiittanen
,Liisa Holm
,Petri Toronen
.
(2021)
.
"A New Approach to Multilabel Stratified Cross Validation with Application to Large and Sparse Gene Ontology Datasets"
.
Henri Tiittanen
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا