ﻻ يوجد ملخص باللغة العربية
We apply the density-matrix renormalization group (DMRG) method to a one-dimensional Hubbard model that lacks Umklapp scattering and thus provides an ideal case to study the Mott-Hubbard transition analytically and numerically. The model has a linear dispersion and displays a metal-to-insulator transition when the Hubbard interaction~$U$ equals the band width, $U_{rm c}=W$, where the single-particle gap opens linearly, $Delta(Ugeq W)=U-W$. The simple nature of the elementary excitations permits to determine numerically with high accuracy the critical interaction strength and the gap function in the thermodynamic limit. The jump discontinuity of the momentum distribution $n_k$ at the Fermi wave number $k_{rm F}=0$ cannot be used to locate accurately $U_{rm c}$ from finite-size systems. However, the slope of $n_k$ at the band edges, $k_{rm B}=pm pi$, reveals the formation of a single-particle bound state which can be used to determine $U_{rm c}$ reliably from $n_k$ using accurate finite-size data.
We study the superfluid-insulator transition in Bose-Hubbard models in one-, two-, and three-dimensional cubic lattices by means of a recently proposed variational wave function. In one dimension, the variational results agree with the expected Berez
We study the Mott transition in a frustrated Hubbard model with next-nearest neighbor hopping at half-filling. The interplay between interaction, dimensionality and geometric frustration closes the one-dimensional Mott gap and gives rise to a metalli
We consider the one-dimensional extended Hubbard model in the presence of an explicit dimerization $delta$. For a sufficiently strong nearest neighbour repulsion we establish the existence of a quantum phase transition between a mixed bond-order wave
We consider the one-band Hubbard model on the square lattice by using variational and Greens function Monte Carlo methods, where the variational states contain Jastrow and backflow correlations on top of an uncorrelated wave function that includes BC
We study the behavior of fermion liquid defined on hexagonal and triangular lattices with short-range repulsion at half filling. In strong coupling limit the Mott-Hubbard phase state is present, the main peculiarity of insulator state is a doubled ce