ترغب بنشر مسار تعليمي؟ اضغط هنا

The SVS13-A Class I chemical complexity as revealed by S-bearing species. SOLIS XIII

146   0   0.0 ( 0 )
 نشر من قبل Claudio Codella
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: The goal is to obtain a census of S-bearing species using interferometric images, towards SVS13-A, a Class I object associated with a hot corino rich in interstellar complex organic molecules. Methods: We used data at 3mm and 1.4mm obtained with IRAM-NOEMA in the framework of the Large Program SOLIS. Results: We imaged the spatial distribution of the line emission of 32SO, 34SO, C32}S, C34S, C33S, OCS, H2C32S, H2C34S, and NS. The low excitation (9 K) 32SO line is tracing the fast collimated jet driven by the nearby SVS13-B. Conversely, the rest of the lines are confined in the inner SVS13-A region, where complex organics have been previously imaged. The non-LTE LVG analysis of SO, SO2, and H2CS indicates a hot corino origin (60-120 au). Temperatures between 50 K and 300 K, and volume densities larger than 10^5 cm-3 have been derived. The abundances are in the following ranges: 0.3-6 10^-6 (CS), 7 10^-9} - 1 10^-7 (SO), 1-10 10^-7 (SO2), a few 10^-10 (H2CS and OCS), and 10^{-10} - 10^{-9}(NS). The N(NS)/N(NS^+) ratio is larger than 10, supporting that the NS^+ ion is mainly formed in the extended envelope. Conclusions: The [H2CS]/[H2CO] ratio increases with time (from Class 0 to Class II objects) by more than one order of magnitude. This suggests that [S]/[O] changes along the Sun-like star forming process. The estimate of the [S]/[H] budget in SVS13-A is 2%-17% of the Solar System value (1.8 10^-5), being consistent with what was previously measured towards Class 0 objects (1%-8%). This supports that the enrichment of the sulphuretted species with respect to dark clouds keeps constant from the Class 0 to the Class I stages of low-mass star formation. The present findings stress the importance of investigating the chemistry of star forming regions using large observational surveys as well as sampling regions on a Solar System scale.



قيم البحث

اقرأ أيضاً

Phosphorus related species are not known to be as omnipresent in space as hydrogen, carbon, nitrogen, oxygen, and sulfur-bearing species. Astronomers spotted very few P-bearing molecules in the interstellar medium and circumstellar envelopes. Limited discovery of the P-bearing species imposes severe constraints in modeling the P-chemistry. In this paper, we carry out extensive chemical models to follow the fate of P-bearing species in diffuse clouds, photon-dominated or photodissociation regions (PDRs), and hot cores/corinos. We notice a curious correlation between the abundances of PO and PN and atomic nitrogen. Since N atoms are comparatively abundant in diffuse clouds and PDRs than in the hot core/corino region, PO/PN reflects < 1 in diffuse clouds, << 1 in PDRs, and > 1 in the late warm-up evolutionary phase of the hot core/corino regions. During the end of the post-warm-up phase, we obtain PO/PN > 1 for hot core and < 1 for its low mass analog. We employ a radiative transfer model to investigate the transitions of some of the P-bearing species in diffuse cloud and hot core regions and estimate the line profiles. Our study estimates the required integration time to observe these transitions with ground-based and space-based telescopes. We also carry out quantum chemical computation of the infrared features of PH3 along with various impurities. We notice that SO2 overlaps with the PH3 bending-scissoring modes around ~ (1000 - 1100) cm-1. We also find that the presence of CO2 can strongly influence the intensity of the stretching modes around ~ 2400 cm-1 of PH3 .
The recently discovered Indus stellar stream exhibits a diverse chemical signature compared to what is found for most other streams due to the abundances of two outlier stars, Indus$_$0 and Indus$_$13. Indus$_$13, exhibits an extreme enhancement in r apid neutron-capture ($r$-)process elements with $mathrm{[Eu/Fe]} = +1.81$. It thus provides direct evidence of the accreted nature of $r$-process enhanced stars. In this paper we present a detailed chemical analysis of the neutron-capture elements in Indus$_$13, revealing the star to be slightly actinide poor. The other outlier, Indus$_0$, displays a globular cluster-like signature with high N, Na, and Al abundances, while the rest of the Indus stars show abundances compatible with a dwarf galaxy origin. Hence, Indus$_0$ provides the first chemical evidence of a fully disrupted dwarf containing a globular cluster. We use the chemical signature of the Indus stars to discuss the nature of the stream progenitor which was likely a chemically evolved system, with a mass somewhere in the range from Ursa Minor to Fornax.
We have observed the Class I protostellar source Elias 29 with Atacama Large Millimeter/submillimeter Array (ALMA). We have detected CS, SO, $^{34}$SO, SO$_2$, and SiO line emissions in a compact component concentrated near the protostar and a ridge component separated from the protostar by 4arcsec ($sim 500$ au). The former component is found to be abundant in SO and SO$_2$ but deficient in CS. The abundance ratio SO/CS is as high as $3^{+13}_{-2} times 10^2$ at the protostar, which is even higher than that in the outflow-shocked region of L1157 B1. However, organic molecules (HCOOCH$_3$, CH$_3$OCH$_3$, CCH, and c-C$_3$H$_2$) are deficient in Elias 29. We attribute the deficiency in organic molecules and richness in SO and SO$_2$ to the evolved nature of the source or the relatively high dust temperature (protectraisebox{-0.7ex}{$:stackrel{textstyle >}{sim}:$} 20 K) in the parent cloud of Elias 29. The SO and SO$_2$ emissions trace rotation around the protostar. Assuming a highly inclined configuration ($i geq 65$degr; 0degr for a face-on configuration) and Keplerian motion for simplicity, the protostellar mass is estimated to be (0.8 -- 1.0) Msun. The $^{34}$SO and SO$_2$ emissions are asymmetric in their spectra; the blue-shifted components are weaker than the red-shifted ones. Although this may be attributed to the asymmetric molecular distribution, other possibilities are also discussed.
We present the first census of the interstellar Complex Organic Molecules (iCOMs) in the low-mass Class I protostar SVS13-A, obtained by analysing data from the IRAM-30m Large Project ASAI (Astrochemical Surveys At IRAM). They consist of an high-sens itivity unbiased spectral survey at the 1mm, 2mm and 3mm IRAM bands. We detected five iCOMs: acetaldehyde (CH$_3$CHO), methyl formate (HCOOCH$_3$), dimethyl ether (CH$_3$OCH$_3$), ethanol (CH$_3$CH$_2$OH) and formamide (NH$_2$CHO). In addition we searched for other iCOMs and ketene (H$_2$CCO), formic acid (HCOOH) and methoxy (CH$_3$O), whose only ketene was detected. The numerous detected lines, from 5 to 37 depending on the species, cover a large upper level energy range, between 15 and 254 K. This allowed us to carry out a rotational diagram analysis and derive rotational temperatures between 35 and 110 K, and column densities between $3times 10^{15}$ and $1times 10^{17}$ cm$^{-2}$ on the 0.3 size previously determined by interferometric observations of glycolaldehyde. These new observations clearly demonstrate the presence of a rich chemistry in the hot corino towards SVS13-A. The measured iCOMs abundances were compared to other Class 0 and I hot corinos, as well as comets, previously published in the literature. We find evidence that (i) SVS13-A is as chemically rich as younger Class 0 protostars, and (ii) the iCOMs relative abundances do not substantially evolve during the protostellar phase.
The atmospheres of gaseous giant exoplanets orbiting close to their parent stars (hot Jupiters) have been probed for nearly two decades. They allow us to investigate the chemical and physical properties of planetary atmospheres under extreme irradiat ion conditions. Previous observations of hot Jupiters as they transit in front of their host stars have revealed the frequent presence of water vapour and carbon monoxide in their atmospheres; this has been studied in terms of scaled solar composition under the usual assumption of chemical equilibrium. Both molecules as well as hydrogen cyanide were found in the atmosphere of HD 209458b, a well studied hot Jupiter (with equilibrium temperature around 1,500 kelvin), whereas ammonia was tentatively detected there and subsequently refuted. Here we report observations of HD 209458b that indicate the presence of water (H2O), carbon monoxide (CO), hydrogen cyanide (HCN), methane (CH4), ammonia (NH3) and acetylene (C2H2), with statistical significance of 5.3 to 9.9 standard deviations per molecule. Atmospheric models in radiative and chemical equilibrium that account for the detected species indicate a carbon-rich chemistry with a carbon-to-oxygen ratio close to or greater than 1, higher than the solar value (0.55). According to existing models relating the atmospheric chemistry to planet formation and migration scenarios, this would suggest that HD 209458b formed far from its present location and subsequently migrated inwards. Other hot Jupiters may also show a richer chemistry than has been previously found, which would bring into question the frequently made assumption that they have solar-like and oxygen-rich compositions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا