ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Prompt for Vision-Language Models

121   0   0.0 ( 0 )
 نشر من قبل Jingkang Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Vision-language pre-training has recently emerged as a promising alternative for representation learning. It shifts from the tradition of using images and discrete labels for learning a fixed set of weights, seen as visual concepts, to aligning images and raw text for two separate encoders. Such a paradigm benefits from a broader source of supervision and allows zero-shot transfer to downstream tasks since visual concepts can be diametrically generated from natural language, known as prompt. In this paper, we identify that a major challenge of deploying such models in practice is prompt engineering. This is because designing a proper prompt, especially for context words surrounding a class name, requires domain expertise and typically takes a significant amount of time for words tuning since a slight change in wording could have a huge impact on performance. Moreover, different downstream tasks require specific designs, further hampering the efficiency of deployment. To overcome this challenge, we propose a novel approach named context optimization (CoOp). The main idea is to model context in prompts using continuous representations and perform end-to-end learning from data while keeping the pre-trained parameters fixed. In this way, the design of task-relevant prompts can be fully automated. Experiments on 11 datasets show that CoOp effectively turns pre-trained vision-language models into data-efficient visual learners, requiring as few as one or two shots to beat hand-crafted prompts with a decent margin and able to gain significant improvements when using more shots (e.g., at 16 shots the average gain is around 17% with the highest reaching over 50%). CoOp also exhibits strong robustness to distribution shift.



قيم البحث

اقرأ أيضاً

This paper presents a detailed study of improving visual representations for vision language (VL) tasks and develops an improved object detection model to provide object-centric representations of images. Compared to the most widely used emph{bottom- up and top-down} model cite{anderson2018bottom}, the new model is bigger, better-designed for VL tasks, and pre-trained on much larger training corpora that combine multiple public annotated object detection datasets. Therefore, it can generate representations of a richer collection of visual objects and concepts. While previous VL research focuses mainly on improving the vision-language fusion model and leaves the object detection model improvement untouched, we show that visual features matter significantly in VL models. In our experiments we feed the visual features generated by the new object detection model into a Transformer-based VL fusion model oscar cite{li2020oscar}, and utilize an improved approach short to pre-train the VL model and fine-tune it on a wide range of downstream VL tasks. Our results show that the new visual features significantly improve the performance across all VL tasks, creating new state-of-the-art results on seven public benchmarks. We will release the new object detection model to public.
Vision-language pre-training (VLP) on large-scale image-text pairs has achieved huge success for the cross-modal downstream tasks. The most existing pre-training methods mainly adopt a two-step training procedure, which firstly employs a pre-trained object detector to extract region-based visual features, then concatenates the image representation and text embedding as the input of Transformer to train. However, these methods face problems of using task-specific visual representation of the specific object detector for generic cross-modal understanding, and the computation inefficiency of two-stage pipeline. In this paper, we propose the first end-to-end vision-language pre-trained model for both V+L understanding and generation, namely E2E-VLP, where we build a unified Transformer framework to jointly learn visual representation, and semantic alignments between image and text. We incorporate the tasks of object detection and image captioning into pre-training with a unified Transformer encoder-decoder architecture for enhancing visual learning. An extensive set of experiments have been conducted on well-established vision-language downstream tasks to demonstrate the effectiveness of this novel VLP paradigm.
Zero-shot image classification has made promising progress by training the aligned image and text encoders. The goal of this work is to advance zero-shot object detection, which aims to detect novel objects without bounding box nor mask annotations. We propose ViLD, a training method via Vision and Language knowledge Distillation. We distill the knowledge from a pre-trained zero-shot image classification model (e.g., CLIP) into a two-stage detector (e.g., Mask R-CNN). Our method aligns the region embeddings in the detector to the text and image embeddings inferred by the pre-trained model. We use the text embeddings as the detection classifier, obtained by feeding category names into the pre-trained text encoder. We then minimize the distance between the region embeddings and image embeddings, obtained by feeding region proposals into the pre-trained image encoder. During inference, we include text embeddings of novel categories into the detection classifier for zero-shot detection. We benchmark the performance on LVIS dataset by holding out all rare categories as novel categories. ViLD obtains 16.1 mask AP$_r$ with a Mask R-CNN (ResNet-50 FPN) for zero-shot detection, outperforming the supervised counterpart by 3.8. The model can directly transfer to other datasets, achieving 72.2 AP$_{50}$, 36.6 AP and 11.8 AP on PASCAL VOC, COCO and Objects365, respectively.
This paper investigates two techniques for developing efficient self-supervised vision transformers (EsViT) for visual representation learning. First, we show through a comprehensive empirical study that multi-stage architectures with sparse self-att entions can significantly reduce modeling complexity but with a cost of losing the ability to capture fine-grained correspondences between image regions. Second, we propose a new pre-training task of region matching which allows the model to capture fine-grained region dependencies and as a result significantly improves the quality of the learned vision representations. Our results show that combining the two techniques, EsViT achieves 81.3% top-1 on the ImageNet linear probe evaluation, outperforming prior arts with around an order magnitude of higher throughput. When transferring to downstream linear classification tasks, EsViT outperforms its supervised counterpart on 17 out of 18 datasets. The code and models will be publicly available.
Interaction and navigation defined by natural language instructions in dynamic environments pose significant challenges for neural agents. This paper focuses on addressing two challenges: handling long sequence of subtasks, and understanding complex human instructions. We propose Episodic Transformer (E.T.), a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions. To improve training, we leverage synthetic instructions as an intermediate representation that decouples understanding the visual appearance of an environment from the variations of natural language instructions. We demonstrate that encoding the history with a transformer is critical to solve compositional tasks, and that pretraining and joint training with synthetic instructions further improve the performance. Our approach sets a new state of the art on the challenging ALFRED benchmark, achieving 38.4% and 8.5% task success rates on seen and unseen test splits.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا