ﻻ يوجد ملخص باللغة العربية
Whether or not anomalies in the thermal conductivity from insulating cuprates can be attributed to antiferromagnetic order and magnons in a 2D Mott insulator remains an intriguing open question. To shed light on this issue, we investigate the thermal conductivity $kappa$ and specific heat $c_v$ of the half-filled 2D single-band Hubbard model using the numerically exact determinant quantum Monte Carlo algorithm and maximum entropy analytic continuation. Both $c_v$ and $kappa$ possess two peaks as a function of temperature, with scales related to the Hubbard interaction energy $U$ and spin superexchange energy $J$, respectively. At low temperatures where the charge degrees of freedom are gapped-out, our results for the contribution to both $c_v$ and the Drude weight associated with $kappa$ from the kinetic energy agree well with spin-wave theory for the spin-$frac{1}{2}$ antiferromagnetic Heisenberg model.
How a Mott insulator develops into a weakly coupled metal upon doping is a central question to understanding various emergent correlated phenomena. To analyze this evolution and its connection to the high-$T_c$ cuprates, we study the single-particle
In Mott insulators, the strong electron-electron Coulomb repulsion prevents metallicity and charge excitations are gapped. In dimensions greater than one, their spins are usually ordered antiferromagnetically at low temperatures. Geometrical frustrat
We show that lightly doped holes will be self-trapped in an antiferromagnetic spin background at low-temperatures, resulting in a spontaneous translational symmetry breaking. The underlying Mott physics is responsible for such novel self-localization
The evolution from an anomalous metallic phase to a Mott insulator within the two-dimensional Hubbard model is investigated by means of the Cellular Dynamical Mean-Field Theory. We show that the density-driven Mott metal-insulator transition is appro
The issues of single particle coherence and its interplay with singlet pairing are studied within the slave boson gauge theory of a doped Mott insulator. Prior work by one of us (T. Senthil, arXiv:0804.1555) showed that the coherence scale below whic