ﻻ يوجد ملخص باللغة العربية
Plasmons are usually described in terms of macroscopic quantities such as electric fields and currents. However as fundamental excitations of metals they are also quantum objects with internal structure. We demonstrate that this can induce an intrinsic dipole moment which is tied to the quantum geometry of the Hilbert space of plasmon states. This {it quantum geometric dipole} offers a unique handle for manipulation of plasmon dynamics, via density modulations and electric fields. As a concrete example we demonstrate that scattering of plasmons with non-vanishing quantum geometric dipole from impurities is non-reciprocal, skewing in different directions in a valley-dependent fashion. This internal structure can be used to control plasmon trajectories in two dimensional materials.
Graphene has raised high expectations as a low-loss plasmonic material in which the plasmon properties can be controlled via electrostatic doping. Here, we analyze realistic configurations, which produce inhomogeneous doping, in contrast to what has
We theoretically demonstrate that dc electron flow across the junction of two-dimensional electron systems leads to excitation of edge magnetoplasmons. The threshold current for such plasmon excitation does not depend on contact effects and approache
Recently, it was demonstrated that a graphene/dielectric/metal configuration can support acoustic plasmons, which exhibit extreme plasmon confinement an order of magnitude higher than that of conventional graphene plasmons. Here, we investigate acous
We present a quantum model to calculate the dipole-dipole coupling between electronic excitations in the conduction band of semiconductor quantum wells. We demonstrate that the coupling depends on a characteristic length, related to the overlap betwe
We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a nanoscale tip: an approach yielding two orders of magnitude increase in the value of in-plan