ﻻ يوجد ملخص باللغة العربية
In this paper, we present our initial efforts for building a code-switching (CS) speech recognition system leveraging existing acoustic models (AMs) and language models (LMs), i.e., no training required, and specifically targeting intra-sentential switching. To achieve such an ambitious goal, new mechanisms for foreign pronunciation generation and language model (LM) enrichment have been devised. Specifically, we have designed an automatic approach to obtain high quality pronunciation of foreign language (FL) words in the native language (NL) phoneme set using existing acoustic phone decoders and an LSTM-based grapheme-to-phoneme (G2P) model. Improved accented pronunciations have thus been obtained by learning foreign pronunciations directly from data. Furthermore, a code-switching LM was deployed by converting the original NL LM into a CS LM using translated word pairs and borrowing statistics for the NL LM. Experimental evidence clearly demonstrates that our approach better deals with accented foreign pronunciations than techniques based on human labeling. Moreover, our best system achieves a 55.5% relative word error rate reduction from 34.4%, obtained with a conventional monolingual ASR system, to 15.3% on an intra-sentential CS task without harming the monolingual recognition accuracy.
Code-switching (CS) occurs when a speaker alternates words of two or more languages within a single sentence or across sentences. Automatic speech recognition (ASR) of CS speech has to deal with two or more languages at the same time. In this study,
In this paper, we conduct data selection analysis in building an English-Mandarin code-switching (CS) speech recognition (CSSR) system, which is aimed for a real CSSR contest in China. The overall training sets have three subsets, i.e., a code-switch
While recurrent neural networks still largely define state-of-the-art speech recognition systems, the Transformer network has been proven to be a competitive alternative, especially in the offline condition. Most studies with Transformers have been c
We make one of the first attempts to build working models for intra-sentential code-switching based on the Equivalence-Constraint (Poplack 1980) and Matrix-Language (Myers-Scotton 1993) theories. We conduct a detailed theoretical analysis, and a smal
This study proposes a trainable adaptive window switching (AWS) method and apply it to a deep-neural-network (DNN) for speech enhancement in the modified discrete cosine transform domain. Time-frequency (T-F) mask processing in the short-time Fourier