ﻻ يوجد ملخص باللغة العربية
Context: Observations of auroral emissions are powerful means to remotely sense the space plasma environment around planetary bodies and ultracool dwarfs. Therefore successful searches and characterization of aurorae outside the Solar System will open new avenues in the area of extrasolar space physics. Aims: We aim to demonstrate that brown dwarfs are ideal objects to search for UV aurora outside the Solar System. We specifically search for UV aurora on the late-type T6.5 brown dwarf 2MASS J12373919+6526148 (in the following 2MASS J1237+6526). Methods: Introducing a parameter referred to as auroral power potential, we derive scaling models for auroral powers for rotationally driven aurora applicable to a broad range of wavelengths. We also analyze Hubble Space Telescope observations obtained with the STIS camera at near-UV, far-UV, and Ly-$alpha$ wavelengths of 2MASS J1237+6526. Results: We show that brown dwarfs, due to their typically strong surface magnetic fields and fast rotation, can produce auroral UV powers on the order of 10$^{19}$ watt or more. Considering their negligible thermal UV emission, their potentially powerful auroral emissions make brown dwarfs ideal candidates for detecting extrasolar aurorae. We find possible emission from 2MASS J1237+6526, but cannot conclusively attribute it to the brown dwarf due to low signal-to-noise values in combination with nonsystematic trends in the background fluxes. The observations provide upper limits for the emission at various UV wavelength bands. The upper limits for the emission correspond to a UV luminosity of $sim$1 $times$ 10$^{19}$ watt, which lies in the range of the theoretically expected values. Conclusions: The possible auroral emission from the dwarf could be produced by a close-in companion and/or magnetospheric transport processes.
The binary brown dwarf WISE J104915.57$-$531906.1 (also Luhman 16AB), composed of a late L and early T dwarf, is a prototypical L/T transition flux reversal binary located at only 2 pc distance. Luhman 16B is a known variable whose light curves evolv
Located at ~2pc, the L7.5+T0.5 dwarfs system WISE J104915.57-531906.1 (Luhman16AB) is the third closest system known to Earth, making it a key benchmark for detailed investigation of brown dwarf atmospheric properties, thermal evolution, multiplicity
Bayesian atmospheric retrieval tools can place constraints on the properties of brown dwarfs and hot Jupiters atmospheres. To fully exploit these methods, high signal-to-noise spectral libraries with well-understood uncertainties are essential. We pr
L dwarfs exhibit low-level, rotationally-modulated photometric variability generally associated with heterogeneous, cloud-covered atmospheres. The spectral character of these variations yields insight into the particle sizes and vertical structure of
We present analysis of Hubble Space Telescope images of 82 nearby field late-M and L dwarfs. We resolve 13 of these systems into double M/L dwarf systems and identify an additional possible binary. Combined with previous observations of 20 L dwarfs,