ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-Model Consensus of Explanations and Beyond for Image Classification Models: An Empirical Study

84   0   0.0 ( 0 )
 نشر من قبل Xuhong Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing interpretation algorithms have found that, even deep models make the same and right predictions on the same image, they might rely on different sets of input features for classification. However, among these sets of features, some common features might be used by the majority of models. In this paper, we are wondering what are the common features used by various models for classification and whether the models with better performance may favor those common features. For this purpose, our works uses an interpretation algorithm to attribute the importance of features (e.g., pixels or superpixels) as explanations, and proposes the cross-model consensus of explanations to capture the common features. Specifically, we first prepare a set of deep models as a committee, then deduce the explanation for every model, and obtain the consensus of explanations across the entire committee through voting. With the cross-model consensus of explanations, we conduct extensive experiments using 80+ models on 5 datasets/tasks. We find three interesting phenomena as follows: (1) the consensus obtained from image classification models is aligned with the ground truth of semantic segmentation; (2) we measure the similarity of the explanation result of each model in the committee to the consensus (namely consensus score), and find positive correlations between the consensus score and model performance; and (3) the consensus score coincidentally correlates to the interpretability.



قيم البحث

اقرأ أيضاً

Many proposed methods for explaining machine learning predictions are in fact challenging to understand for nontechnical consumers. This paper builds upon an alternative consumer-driven approach called TED that asks for explanations to be provided in training data, along with target labels. Using semi-synthetic data from credit approval and employee retention applications, experiments are conducted to investigate some practical considerations with TED, including its performance with different classification algorithms, varying numbers of explanations, and variability in explanations. A new algorithm is proposed to handle the case where some training examples do not have explanations. Our results show that TED is robust to increasing numbers of explanations, noisy explanations, and large fractions of missing explanations, thus making advances toward its practical deployment.
Recent algorithms with state-of-the-art few-shot classification results start their procedure by computing data features output by a large pretrained model. In this paper we systematically investigate which models provide the best representations for a few-shot image classification task when pretrained on the Imagenet dataset. We test their representations when used as the starting point for different few-shot classification algorithms. We observe that models trained on a supervised classification task have higher performance than models trained in an unsupervised manner even when transferred to out-of-distribution datasets. Models trained with adversarial robustness transfer better, while having slightly lower accuracy than supervised models.
We find that the way we choose to represent data labels can have a profound effect on the quality of trained models. For example, training an image classifier to regress audio labels rather than traditional categorical probabilities produces a more r eliable classification. This result is surprising, considering that audio labels are more complex than simpler numerical probabilities or text. We hypothesize that high dimensional, high entropy label representations are generally more useful because they provide a stronger error signal. We support this hypothesis with evidence from various label representations including constant matrices, spectrograms, shuffled spectrograms, Gaussian mixtures, and uniform random matrices of various dimensionalities. Our experiments reveal that high dimensional, high entropy labels achieve comparable accuracy to text (categorical) labels on the standard image classification task, but features learned through our label representations exhibit more robustness under various adversarial attacks and better effectiveness with a limited amount of training data. These results suggest that label representation may play a more important role than previously thought. The project website is at url{https://www.creativemachineslab.com/label-representation.html}.
Generative Adversarial Networks (GANs) have become increasingly powerful, generating mind-blowing photorealistic images that mimic the content of datasets they were trained to replicate. One recurrent theme in medical imaging is whether GANs can also be effective at generating workable medical data as they are for generating realistic RGB images. In this paper, we perform a multi-GAN and multi-application study to gauge the benefits of GANs in medical imaging. We tested various GAN architectures from basic DCGAN to more sophisticated style-based GANs on three medical imaging modalities and organs namely : cardiac cine-MRI, liver CT and RGB retina images. GANs were trained on well-known and widely utilized datasets from which their FID score were computed to measure the visual acuity of their generated images. We further tested their usefulness by measuring the segmentation accuracy of a U-Net trained on these generated images. Results reveal that GANs are far from being equal as some are ill-suited for medical imaging applications while others are much better off. The top-performing GANs are capable of generating realistic-looking medical images by FID standards that can fool trained experts in a visual Turing test and comply to some metrics. However, segmentation results suggests that no GAN is capable of reproducing the full richness of a medical datasets.
Language Models based on recurrent neural networks have dominated recent image caption generation tasks. In this paper, we introduce a Language CNN model which is suitable for statistical language modeling tasks and shows competitive performance in i mage captioning. In contrast to previous models which predict next word based on one previous word and hidden state, our language CNN is fed with all the previous words and can model the long-range dependencies of history words, which are critical for image captioning. The effectiveness of our approach is validated on two datasets MS COCO and Flickr30K. Our extensive experimental results show that our method outperforms the vanilla recurrent neural network based language models and is competitive with the state-of-the-art methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا