ترغب بنشر مسار تعليمي؟ اضغط هنا

ShopTalk: A System for Conversational Faceted Search

84   0   0.0 ( 0 )
 نشر من قبل James Lee-Thorp
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present ShopTalk, a multi-turn conversational faceted search system for shopping that is designed to handle large and complex schemas that are beyond the scope of state of the art slot-filling systems. ShopTalk decouples dialog management from fulfillment, thereby allowing the dialog understanding system to be domain-agnostic and not tied to the particular shopping application. The dialog understanding system consists of a deep-learned Contextual Language Understanding module, which interprets user utterances, and a primarily rules-based Dialog-State Tracker (DST), which updates the dialog state and formulates search requests intended for the fulfillment engine. The interface between the two modules consists of a minimal set of domain-agnostic intent operators, which instruct the DST on how to update the dialog state. ShopTalk was deployed in 2020 on the Google Assistant for Shopping searches.



قيم البحث

اقرأ أيضاً

We propose a unified Implicit Dialog framework for goal-oriented, information seeking tasks of Conversational Search applications. It aims to enable dialog interactions with domain data without replying on explicitly encoded the rules but utilizing t he underlying data representation to build the components required for dialog interaction, which we refer as Implicit Dialog in this work. The proposed framework consists of a pipeline of End-to-End trainable modules. A centralized knowledge representation is used to semantically ground multiple dialog modules. An associated set of tools are integrated with the framework to gather end users input for continuous improvement of the system. The goal is to facilitate development of conversational systems by identifying the components and the data that can be adapted and reused across many end-user applications. We demonstrate our approach by creating conversational agents for several independent domains.
Dietary supplements (DS) have been widely used by consumers, but the information around the efficacy and safety of DS is disparate or incomplete, thus creating barriers for consumers to find information effectively. Conversational agent (CA) systems have been applied to the healthcare domain, but there is no such a system to answer consumers regarding DS use, although widespread use of DS. In this study, we develop the first CA system for DS use
216 - Kaihui Liang , Austin Chau , Yu Li 2020
Gunrock 2.0 is built on top of Gunrock with an emphasis on user adaptation. Gunrock 2.0 combines various neural natural language understanding modules, including named entity detection, linking, and dialog act prediction, to improve user understandin g. Its dialog management is a hierarchical model that handles various topics, such as movies, music, and sports. The system-level dialog manager can handle question detection, acknowledgment, error handling, and additional functions, making downstream modules much easier to design and implement. The dialog manager also adapts its topic selection to accommodate different users profile information, such as inferred gender and personality. The generation model is a mix of templates and neural generation models. Gunrock 2.0 is able to achieve an average rating of 3.73 at its latest build from May 29th to June 4th.
Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. To develop an effective CRS, the support of high-quality datasets is essential. Existing CRS datasets mainly focus on immediate r equests from users, while lack proactive guidance to the recommendation scenario. In this paper, we contribute a new CRS dataset named textbf{TG-ReDial} (textbf{Re}commendation through textbf{T}opic-textbf{G}uided textbf{Dial}og). Our dataset has two major features. First, it incorporates topic threads to enforce natural semantic transitions towards the recommendation scenario. Second, it is created in a semi-automatic way, hence human annotation is more reasonable and controllable. Based on TG-ReDial, we present the task of topic-guided conversational recommendation, and propose an effective approach to this task. Extensive experiments have demonstrated the effectiveness of our approach on three sub-tasks, namely topic prediction, item recommendation and response generation. TG-ReDial is available at https://github.com/RUCAIBox/TG-ReDial.
Successful conversational search systems can present natural, adaptive and interactive shopping experience for online shopping customers. However, building such systems from scratch faces real word challenges from both imperfect product schema/knowle dge and lack of training dialog data.In this work we first propose ConvSearch, an end-to-end conversational search system that deeply combines the dialog system with search. It leverages the text profile to retrieve products, which is more robust against imperfect product schema/knowledge compared with using product attributes alone. We then address the lack of data challenges by proposing an utterance transfer approach that generates dialogue utterances by using existing dialog from other domains, and leveraging the search behavior data from e-commerce retailer. With utterance transfer, we introduce a new conversational search dataset for online shopping. Experiments show that our utterance transfer method can significantly improve the availability of training dialogue data without crowd-sourcing, and the conversational search system significantly outperformed the best tested baseline.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا