ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimating outflow masses and velocities in merger simulations: impact of r-process heating and neutrino cooling

105   0   0.0 ( 0 )
 نشر من قبل Francois Foucart
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The determination of the mass, composition, and geometry of matter outflows in black hole-neutron star and neutron star-neutron star binaries is crucial to current efforts to model kilonovae, and to understand the role of neutron star merger in r-process nucleosynthesis. In this manuscript, we review the simple criteria currently used in merger simulations to determine whether matter is unbound and what the asymptotic velocity of ejected material will be. We then show that properly accounting for both heating and cooling during r-process nucleosynthesis is important to accurately predict the mass and kinetic energy of the outflows. We also derive a model accounting for both of these effects that can be easily implemented in merger simulations. We show, however, that the detailed velocity distribution and geometry of the outflows can currently only be captured by full 3D fluid simulations of the outflows, as non-local effect ignored by the simple criteria used in merger simulations cannot be safely neglected when modeling these effects. Finally, we propose the introduction of simple source terms in the fluid equations to approximately account for heating/cooling from r-process nucleosynthesis in future seconds-long 3D simulations of merger remnants, without the explicit inclusion of out-of-nuclear statistical equilibrium reactions in the simulations.



قيم البحث

اقرأ أيضاً

Neutron star merger accretion discs can launch neutron-rich winds of $>10^{-2},mathrm{M}_odot$. This ejecta is a prime site for r-process nucleosynthesis, which will produce a range of radioactive heavy nuclei. The decay of these nuclei releases enou gh energy to accelerate portions of the wind by ~0.1c. Here, we investigate the effect of r-process heating on the dynamical evolution of disc winds. We extract the wind from a 3D general relativistic magnetohydrodynamic simulation of a disc from a post-merger system. This is used to create inner boundary conditions for 2D hydrodynamic simulations that continue the original 3D simulation. We perform two such simulations: one that includes the r-process heating, and another one that does not. We follow the hydrodynamic simulations until the winds reach homology (60 seconds). Using time-dependent multi-frequency multi-dimensional Monte Carlo radiation transport simulations, we then calculate the kilonova light curves from the winds with and without dynamical r-process heating. We find that the r-process heating can substantially alter the velocity distribution of the wind, shifting the mass-weighted median velocity from 0.06c to 0.12c. The inclusion of the dynamical r-process heating makes the light curve brighter and bluer at ~1 d post-merger. However, the high-velocity tail of the ejecta distribution and the early light curves are largely unaffected.
105 - S. Rosswog 2013
We follow the longterm evolution of the dynamic ejecta of neutron star mergers for up to 100 years and over a density range of roughly 40 orders of magnitude. We include the nuclear energy input from the freshly synthesized, radioactively decaying nu clei in our simulations and study its effects on the remnant dynamics. Although the nuclear heating substantially alters the longterm evolution, we find that running nuclear networks over purely hydrodynamic simulations (i.e. without heating) yields actually acceptable nucleosynthesis results. The main dynamic effect of the radioactive heating is to quickly smooth out inhomogeneities in the initial mass distribution, subsequently the evolution proceeds self-similarly and after 100 years the remnant still carries the memory of the initial binary mass ratio. We also explore the nucleosynthetic yields for two mass ejection channels. The dynamic ejecta very robustly produce strong r-process elements with $A > 130$ with a pattern that is essentially independent of the details of the merging system. From a simple model we find that neutrino-driven winds yield weak r-process contributions with $50 < A < 130$ whose abundance patterns vary substantially between different merger cases. This is because their electron fraction, set by the ratio of neutrino luminosities, varies considerably from case to case. Such winds do not produce any $^{56}{rm Ni}$, but a range of radioactive isotopes that are long-lived enough to produce a second, radioactively powered electromagnetic transient in addition to the macronova from the dynamic ejecta. While our wind model is very simple, it nevertheless demonstrates the potential of such neutrino-driven winds for electromagnetic transients and it motivates further, more detailed neutrino-hydrodynamic studies. The properties of the mentioned transients are discussed in more detail in a companion paper.
We present fitting formulae for the dynamical ejecta properties and remnant disk masses from a large sample of numerical relativity simulations. The considered data include some of the latest simulations with microphysical nuclear equations of state (EOS) and neutrino transport as well as other results with polytropic EOS available in the literature. Our analysis indicates that the broad features of the dynamical ejecta and disk properties can be captured by fitting expressions that depend on mass ratio and reduced tidal parameter. The comparative analysis of literature data shows that microphysics and neutrino absorption have a significant impact on the dynamical ejecta properties. Microphysical nuclear equations of state lead to average velocities smaller than polytropic EOS, while including neutrino absorption results in larger average ejecta masses and electron fractions. Hence, microphysics and neutrino transport are necessary to obtain quantitative models of the ejecta in terms of the binary parameters.
We investigate generalized interacting dark matter-dark energy scenarios with a time-dependent coupling parameter, allowing also for freedom in the neutrino sector. The models are tested in the phantom and quintessence regimes, characterized by an eq uation of state $w_x<-1$ and $w_x>-1$, respectively. Our analyses show that for some of the scenarios the existing tensions on the Hubble constant $H_0$ and on the clustering parameter $S_8$ can be significantly alleviated. The relief is either due to textit{(a)} a dark energy component which lies within the phantom region; or textit{(b)} the presence of a dynamical coupling in quintessence scenarios. The inclusion of massive neutrinos into the interaction schemes does not affect neither the constraints on the cosmological parameters nor the bounds on the total number or relativistic degrees of freedom $N_{rm eff}$, which are found to be extremely robust and, in general, strongly consistent with the canonical prediction $N_{rm eff}=3.045$. The most stringent bound on the total neutrino mass $M_{ u}$ is $M_{ u}<0.116$ eV and it is obtained within a quintessence scenario in which the matter mass-energy density is only mildly affected by the presence of a dynamical dark sector coupling.
We present a first exploration of the results of neutron star-black hole mergers using black hole masses in the most likely range of $7M_odot-10M_odot$, a neutrino leakage scheme, and a modeling of the neutron star material through a finite-temperatu re nuclear-theory based equation of state. In the range of black hole spins in which the neutron star is tidally disrupted ($chi_{rm BH}gtrsim 0.7$), we show that the merger consistently produces large amounts of cool ($Tlesssim 1,{rm MeV}$), unbound, neutron-rich material ($M_{rm ej}sim 0.05M_odot-0.20M_odot$). A comparable amount of bound matter is initially divided between a hot disk ($T_{rm max}sim 15,{rm MeV}$) with typical neutrino luminosity $L_ usim 10^{53},{rm erg/s}$, and a cooler tidal tail. After a short period of rapid protonization of the disk lasting $sim 10,{rm ms}$, the accretion disk cools down under the combined effects of the fall-back of cool material from the tail, continued accretion of the hottest material onto the black hole, and neutrino emission. As the temperature decreases, the disk progressively becomes more neutron-rich, with dimmer neutrino emission. This cooling process should stop once the viscous heating in the disk (not included in our simulations) balances the cooling. These mergers of neutron star-black hole binaries with black hole masses $M_{rm BH}sim 7M_odot-10M_odot$ and black hole spins high enough for the neutron star to disrupt provide promising candidates for the production of short gamma-ray bursts, of bright infrared post-merger signals due to the radioactive decay of unbound material, and of large amounts of r-process nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا