ترغب بنشر مسار تعليمي؟ اضغط هنا

Signatures of extended radio emission from escaping electrons in the Lighthouse Nebula

81   0   0.0 ( 0 )
 نشر من قبل Pol Bordas
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several supersonic runaway pulsar wind nebulae (sPWNe) with jet-like extended structures have been recently discovered in X-rays. If these structures are the product of electrons escaping the system and diffusing into the surrounding interstellar medium, they can produce a radio halo extending for several arcmin around the source. We model the expected radio emission in this scenario in the Lighthouse Nebula sPWN. We assume a constant particle injection rate during the source lifetime, and isotropic diffusion into the surrounding medium. Our predictions strongly depend on the low- and high-energy cutoffs given in the particle distribution. Our results indicate that extended radio emission can be detected from the Lighthouse Nebula without the need to invoke extreme values for the model parameters. We provide synthetic synchrotron maps that can be used to constrain these results with observations by current highly sensitive radio instruments.



قيم البحث

اقرأ أيضاً

Jets from rotation-powered pulsars have so far only been observed in systems moving subsonically trough their ambient medium and/or embedded in their progenitor supernova remnant (SNR). Supersonic runaway pulsars are also expected to produce jets, bu t they have not been confirmed so far. We investigated the nature of the jet-like structure associated to the INTEGRAL source IGR J11014-6103 (the Lighthouse nebula). The source is a neutron star escaping its parent SNR MSH 11-61A supersonically at a velocity exceeding 1000 km/s. We observed the Lighthouse nebula and its jet-like X-ray structure through dedicated high spatial resolution observations in X-rays (Chandra) and radio band (ATCA). Our results show that the feature is a true pulsars jet. It extends highly collimated over >11pc, displays a clear precession-like modulation, and propagates nearly perpendicular to the system direction of motion, implying that the neutron stars spin axis in IGR J11014-6103 is almost perpendicular to the direction of the kick received during the supernova explosion. Our findings suggest that jets are common to rotation-powered pulsars, and demonstrate that supernovae can impart high kick velocities to misaligned spinning neutron stars, possibly through distinct, exotic, core-collapse mechanisms.
121 - Yiwei Bao , Yang Chen 2019
The Vela,X pulsar wind nebula (PWN) is characterized by the extended radio nebula (ERN) and the central X-ray cocoon. We have interpreted the $gamma$-ray spectral properties of the cocoon in the sibling paper (Bao et al.,2019); here, we account for t he broadband photon spectrum of the ERN. Since the diffusive escape of the electrons from the TeV emitting region is expected to play an insignificant role in shaping the spectrum of the ERN, we attribute the GeV cutoff of the ERN to the reverse shock-PWN interaction. Due to the disruption of the reverse shock, most of plasma of the PWN is driven into the ERN. During the subsequent reverberation phase, the ERN could be compressed by a large factor in radius, and the magnetic field in the ERN is thus significantly enhanced, burning off the high energy electrons. We thus obtain the electron spectrum of the ERN and the broadband spectrum of the ERN are explained satisfactorily.
The first repeating fast radio burst (FRB), FRB 121102, was found to be associated with a spatially coincident, persistent nonthermal radio source, but the origin of the persistent emission remains unknown. In this paper, we propose that the persiste nt emission is produced via synchrotron-heating process by multiple bursts of FRB 121102 in a self-absorbed synchrotron nebula. As a population of bursts of the repeating FRB absorbed by the synchrotron nebula, the energy distribution of electrons in the nebula will change significantly. As a result, the spectrum of the nebula will show a hump steadily. For the persistent emission of FRB 121102, the total energy of bursts injecting into the nebula is required to be about $3.3times10^{49},unit{erg}$, the burst injection age is over $6.7times 10^4,unit{yr}$, the nebula size is $sim0.02,unit{pc}$, and the electron number is about $3.2times10^{55}$. We predict that as more bursts inject, the brightness of the nebula would be brighter than the current observation, and meanwhile, the peak frequency would become higher. Due to the synchrotron absorption of the nebula, some low-frequency bursts would be absorbed, which may explain why most bursts were detected above $sim1~unit{GHz}$.
We report on deep Chandra X-ray Telescope imaging observations of 4C 63.20, one of the few known radio galaxies at z>3.5. The X-ray counterpart is resolved into a core plus two off-nuclear sources that (combined) account for close to 30% of the total X-ray flux. Their morphology and orientation are consistent with a diffuse, lobe-like nature, albeit compact hotspots cannot be ruled out. The broadband spectral energy distribution of 4C 63.20 can be reproduced with a jet model where the majority of the radio flux can be ascribed to synchrotron emission from the hotspots, whereas the (non-nuclear) X-ray emission is produced via Inverse Compton (IC) off of Cosmic Microwave Background (CMB) photons within the extended lobes. This scenario is broadly consistent with the expectation from highly magnetized lobes in a hotter CMB, and supports the view that IC/CMB may quench less extreme radio lobes at high redshifts.
Context. After the detection of a 321-days periodicity in X-rays, HESS J0632+057 can be robustly considered a new member of the selected group of gamma-ray binaries. These sources are known to show extended radio structure at scales of milliarcsecond s (mas). Aims. We present the expected extended radio emission on mas scales from HESS J0632+057. Methods. We observed HESS J0632+057 with the European VLBI Network (EVN) at 1.6 GHz in two epochs: during the January/February 2011 X-ray outburst and 30 days later. Results. The VLBI image obtained during the outburst shows a compact ~0.4 mJy radio source, whereas 30 days later the source has faded and appears extended, with a projected size of ~75 AU. The peak of the emission is displaced between runs 21+/-5 AU, which is bigger than the orbit size. The position of the radio source is compatible with the Be star MWC 148, which sets the proper motion of the binary system below 3 mas yr^-1 in each coordinate. The brightness temperature of the source is above 2 times 10^6 K. We compare the multiwavelength properties of HESS J0632+057 with those of the previously known gamma-ray binaries. Conclusions. HESS J0632+057 displays extended and variable non-thermal radio emission. Its morphology, size, and displacement at AU scales are similar to those found in the other gamma-ray binaries, PSR B1259-63, LS 5039 and LS I +61 303, supporting a similar nature for HESS J0632+057.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا