ﻻ يوجد ملخص باللغة العربية
In this letter, we present a high pulse energy Raman laser at 1946 nm wavelength directly pumped with a 1533 nm custom-made fiber laser. The Raman laser is based on the stimulated Raman scattering (SRS) in an 8-meter carbon dioxide (CO2) filled nested anti-resonant hollow-core fiber (ARHCF). The low energy phonon emission combined with the inherent SRS process along the low-loss fiber allows the generation of high pulse energy up to 15.4 {mu}J at atmospheric CO2 pressure. The Raman laser exhibits good long-term stability and low relative intensity noise (RIN) of less than 4%. We also investigate the pressure-dependent overlap of the Raman laser line with the absorption band of CO2 at 2 {mu}m spectral range. Our results constitute a novel and promising technology towards high energy 2 {mu}m lasers.
Emission at 4.6 um was observed from an N2O filled hollow core fiber laser. 8-ns pump pulses at 1.517 um excited a vibrational overtone resulting in lasing on an R and P branch fundamental transition from the upper pump state. At optimum gas pressure
In this paper we consider mid-infrared Raman lasers based on gas-filled hollow-core silica fibers and provide theoretical and experimental analysis of factors that limit the efficiency and output power of these lasers. As a result, we realized an eff
In this work, we present a high pulse energy multi-wavelength Raman laser spanning from 1.53 um up to 2.4 um by employing the cascaded rotational stimulated Raman scattering (SRS) effect in a 5-m hydrogen (H2) -filled nested anti-resonant fiber (NARF
We report on 33 % efficient generation of the first Stokes in a high concentration GeO2 fiber Raman laser pumped by a 22 W Thulium doped fiber laser. An output power of 4.6 W at 2.105 um is demonstrated.
In this paper, a technique combing cascaded energy-transfer pumping (CEP) method and master-oscillator power-amplifier (MOPA) configuration is proposed for power scaling of 1.6-um-band single-frequency fiber lasers (SFFLs), where the Er3+ ion has a l