ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluating Predictive Uncertainty under Distributional Shift on Dialogue Dataset

87   0   0.0 ( 0 )
 نشر من قبل Nyoungwoo Lee
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In open-domain dialogues, predictive uncertainties are mainly evaluated in a domain shift setting to cope with out-of-distribution inputs. However, in real-world conversations, there could be more extensive distributional shifted inputs than the out-of-distribution. To evaluate this, we first propose two methods, Unknown Word (UW) and Insufficient Context (IC), enabling gradual distributional shifts by corruption on the dialogue dataset. We then investigate the effect of distributional shifts on accuracy and calibration. Our experiments show that the performance of existing uncertainty estimation methods consistently degrades with intensifying the shift. The results suggest that the proposed methods could be useful for evaluating the calibration of dialogue systems under distributional shifts.



قيم البحث

اقرأ أيضاً

Modern machine learning methods including deep learning have achieved great success in predictive accuracy for supervised learning tasks, but may still fall short in giving useful estimates of their predictive {em uncertainty}. Quantifying uncertaint y is especially critical in real-world settings, which often involve input distributions that are shifted from the training distribution due to a variety of factors including sample bias and non-stationarity. In such settings, well calibrated uncertainty estimates convey information about when a models output should (or should not) be trusted. Many probabilistic deep learning methods, including Bayesian-and non-Bayesian methods, have been proposed in the literature for quantifying predictive uncertainty, but to our knowledge there has not previously been a rigorous large-scale empirical comparison of these methods under dataset shift. We present a large-scale benchmark of existing state-of-the-art methods on classification problems and investigate the effect of dataset shift on accuracy and calibration. We find that traditional post-hoc calibration does indeed fall short, as do several other previous methods. However, some methods that marginalize over models give surprisingly strong results across a broad spectrum of tasks.
Evaluating open-domain dialogue systems is difficult due to the diversity of possible correct answers. Automatic metrics such as BLEU correlate weakly with human annotations, resulting in a significant bias across different models and datasets. Some researchers resort to human judgment experimentation for assessing response quality, which is expensive, time consuming, and not scalable. Moreover, judges tend to evaluate a small number of dialogues, meaning that minor differences in evaluation configuration may lead to dissimilar results. In this paper, we present interpretable metrics for evaluating topic coherence by making use of distributed sentence representations. Furthermore, we introduce calculable approximations of human judgment based on conversational coherence by adopting state-of-the-art entailment techniques. Results show that our metrics can be used as a surrogate for human judgment, making it easy to evaluate dialogue systems on large-scale datasets and allowing an unbiased estimate for the quality of the responses.
Despite improvements in performances on different natural language generation tasks, deep neural models are prone to hallucinating facts that are incorrect or nonexistent. Different hypotheses are proposed and examined separately for different tasks, but no systematic explanations are available across these tasks. In this study, we draw connections between hallucinations and predictive uncertainty in conditional language generation. We investigate their relationship in both image captioning and data-to-text generation and propose a simple extension to beam search to reduce hallucination. Our analysis shows that higher predictive uncertainty corresponds to a higher chance of hallucination. Epistemic uncertainty is more indicative of hallucination than aleatoric or total uncertainties. It helps to achieve better results of trading performance in standard metric for less hallucination with the proposed beam search variant.
Dialogue state trackers have made significant progress on benchmark datasets, but their generalization capability to novel and realistic scenarios beyond the held-out conversations is less understood. We propose controllable counterfactuals (CoCo) to bridge this gap and evaluate dialogue state tracking (DST) models on novel scenarios, i.e., would the system successfully tackle the request if the user responded differently but still consistently with the dialogue flow? CoCo leverages turn-level belief states as counterfactual conditionals to produce novel conversation scenarios in two steps: (i) counterfactual goal generation at turn-level by dropping and adding slots followed by replacing slot values, (ii) counterfactual conversation generation that is conditioned on (i) and consistent with the dialogue flow. Evaluating state-of-the-art DST models on MultiWOZ dataset with CoCo-generated counterfactuals results in a significant performance drop of up to 30.8% (from 49.4% to 18.6%) in absolute joint goal accuracy. In comparison, widely used techniques like paraphrasing only affect the accuracy by at most 2%. Human evaluations show that COCO-generated conversations perfectly reflect the underlying user goal with more than 95% accuracy and are as human-like as the original conversations, further strengthening its reliability and promise to be adopted as part of the robustness evaluation of DST models.
Knowledge-grounded dialogue agents are systems designed to conduct a conversation based on externally provided background information, such as a Wikipedia page. Such dialogue agents, especially those based on neural network language models, often pro duce responses that sound fluent but are not justified by the background information. Progress towards addressing this problem requires developing automatic evaluation metrics that can quantify the extent to which responses are grounded in background information. To facilitate evaluation of such metrics, we introduce the Benchmark for Evaluation of Grounded INteraction (BEGIN). BEGIN consists of 8113 dialogue turns generated by language-model-based dialogue systems, accompanied by humans annotations specifying the relationship between the systems response and the background information. These annotations are based on an extension of the natural language inference paradigm. We use the benchmark to demonstrate the effectiveness of adversarially generated data for improving an evaluation metric based on existing natural language inference datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا