ﻻ يوجد ملخص باللغة العربية
The local and global control results for a general higher-order KdV-type operator posed on the unit circle are presented. Using spectral analysis, we are able to prove local results, that is, the equation is locally controllable and exponentially stable. To extend the local results to the global one we captured the smoothing properties of the Bourgain spaces, the so-called propagation of singularities, which are proved with a new perspective. These propagation, together with the Strichartz estimates, are the key to extending the local control properties to the global one, precisely, higher-order KdV-type equations are globally controllable and exponentially stabilizable in the Sobolev space $H^{s}(mathbb{T})$ for any $s geq 0$. Our results recover previous results in the literature for the KdV and Kawahara equations and extend, for a general higher-order operator of KdV-type, the Strichartz estimates as well as the propagation results, which are the main novelties of this work.
We develop the notion of higher Cheeger constants for a measurable set $Omega subset mathbb{R}^N$. By the $k$-th Cheeger constant we mean the value [h_k(Omega) = inf max {h_1(E_1), dots, h_1(E_k)},] where the infimum is taken over all $k$-tuples of m
In this article we study ergodic problems in the whole space $mathbb{R}^N$ for a weakly coupled systems of viscous Hamilton-Jacobi equations with coercive right-hand sides. The Hamiltonians are assumed to have a fairly general structure and the switc
For initial data in Sobolev spaces $H^s(mathbb T)$, $frac 12 < s leqslant 1$, the solution to the Cauchy problem for the Benjamin-Ono equation on the circle is shown to grow at most polynomially in time at a rate $(1+t)^{3(s-frac 12) + epsilon}$, $0<
The well-known Greens function method has been recently generalized to nonlinear second order differential equations. In this paper we study possibilities of exact Greens function solutions of nonlinear differential equations of higher order. We show
Corrector estimates constitute a key ingredient in the derivation of optimal convergence rates via two-scale expansion techniques in homogenization theory of random uniformly elliptic equations. The present work follows up - in terms of corrector est