Resting state fMRI-based temporal coherence mapping


الملخص بالإنكليزية

Long-range temporal coherence (LRTC) is quite common to dynamic systems and is fundamental to the system function. LRTC in the brain has been shown to be important to cognition. Assessing LRTC may provide critical information for understanding the potential underpinnings of brain organization, function, and cognition. To facilitate this overarching goal, we provide a method, which is named temporal coherence mapping (TCM), to explicitly quantify LRTC using resting state fMRI. TCM is based on correlation analysis of the transit states of the phase space reconstructed by temporal embedding. A few TCM properties were collected to measure LRTC, including the averaged correlation, anti-correlation, the ratio of correlation and anticorrelation, the mean coherent and incoherent duration, and the ratio between the coherent and incoherent time. TCM was first evaluated with simulations and then with the large Human Connectome Project data. Evaluation results showed that TCM metrics can successfully differentiate signals with different temporal coherence regardless of the parameters used to reconstruct the phase space. In human brain, TCM metrics except the ratio of the coherent/incoherent time showed high test-retest reproducibility; TCM metrics are related to age, sex, and total cognitive scores. In summary, TCM provides a first-of-its-kind tool to assess LRTC and the imbalance between coherence and incoherence; TCM properties are physiologically and cognitively meaningful.

تحميل البحث