ﻻ يوجد ملخص باللغة العربية
Today, two-factor authentication (2FA) is a widely implemented mechanism to counter phishing attacks. Although much effort has been investigated in 2FA, most 2FA systems are still vulnerable to carefully designed phishing attacks, and some even request special hardware, which limits their wide deployment. Recently, real-time phishing (RTP) has made the situation even worse because an adversary can effortlessly establish a phishing website replicating a target website without any background of the web page design technique. Traditional 2FA can be easily bypassed by such RTP attacks. In this work, we propose a novel 2FA system to counter RTP attacks. The main idea is to request a user to take a photo of the web browser with the domain name in the address bar as the 2nd authentication factor. The web server side extracts the domain name information based on Optical Character Recognition (OCR), and then determines if the user is visiting this website or a fake one, thus defeating the RTP attacks where an adversary must set up a fake website with a different domain. We prototyped our system and evaluated its performance in various environments. The results showed that PhotoAuth is an effective technique with good scalability. We also showed that compared to other 2FA systems, PhotoAuth has several advantages, especially no special hardware or software support is needed on the client side except a phone, making it readily deployable.
The majority of systems rely on user authentication on passwords, but passwords have so many weaknesses and widespread use that easily raise significant security concerns, regardless of their encrypted form. Users hold the same password for different
Phishing is a major problem on the Web. Despite the significant attention it has received over the years, there has been no definitive solution. While the state-of-the-art solutions have reasonably good performance, they require a large amount of tra
Due to the advances of sensing and storage technologies, a tremendous amount of data becomes available and, it supports the phenomenal growth of artificial intelligence (AI) techniques especially, deep learning (DL), in various application domains. W
Adversarial patch attack against image classification deep neural networks (DNNs), in which the attacker can inject arbitrary distortions within a bounded region of an image, is able to generate adversarial perturbations that are robust (i.e., remain
Recent work has discovered that deep reinforcement learning (DRL) policies are vulnerable to adversarial examples. These attacks mislead the policy of DRL agents by perturbing the state of the environment observed by agents. They are feasible in prin