ﻻ يوجد ملخص باللغة العربية
We tackle the problem of monocular 3D reconstruction of articulated objects like humans and animals. We contribute DensePose 3D, a method that can learn such reconstructions in a weakly supervised fashion from 2D image annotations only. This is in stark contrast with previous deformable reconstruction methods that use parametric models such as SMPL pre-trained on a large dataset of 3D object scans. Because it does not require 3D scans, DensePose 3D can be used for learning a wide range of articulated categories such as different animal species. The method learns, in an end-to-end fashion, a soft partition of a given category-specific 3D template mesh into rigid parts together with a monocular reconstruction network that predicts the part motions such that they reproject correctly onto 2D DensePose-like surface annotations of the object. The decomposition of the object into parts is regularized by expressing part assignments as a combination of the smooth eigenfunctions of the Laplace-Beltrami operator. We show significant improvements compared to state-of-the-art non-rigid structure-from-motion baselines on both synthetic and real data on categories of humans and animals.
The 3D pose estimation from a single image is a challenging problem due to depth ambiguity. One type of the previous methods lifts 2D joints, obtained by resorting to external 2D pose detectors, to the 3D space. However, this type of approaches disca
We present a system for automatic converting of 2D mask object predictions and raw LiDAR point clouds into full 3D bounding boxes of objects. Because the LiDAR point clouds are partial, directly fitting bounding boxes to the point clouds is meaningle
Perceiving and manipulating 3D articulated objects (e.g., cabinets, doors) in human environments is an important yet challenging task for future home-assistant robots. The space of 3D articulated objects is exceptionally rich in their myriad semantic
We present StrobeNet, a method for category-level 3D reconstruction of articulating objects from one or more unposed RGB images. Reconstructing general articulating object categories % has important applications, but is challenging since objects can
We introduce the Universal Manipulation Policy Network (UMPNet) -- a single image-based policy network that infers closed-loop action sequences for manipulating arbitrary articulated objects. To infer a wide range of action trajectories, the policy s