ﻻ يوجد ملخص باللغة العربية
Spectroscopically, TDEs are characterized by broad ( 10$^{4}$ km/s) emission lines and show large diversity as well as different line profiles. After carefully and consistently performing a series of data reduction tasks including host galaxy light subtraction, we present here the first detailed, spectroscopic population study of 16 optical/UV TDEs. We report a time lag between the peaks of the optical light-curves and the peak luminosity of H$alpha$ spanning between 7 - 45 days. If interpreted as light-echoes, these lags correspond to distances of 2 - 12 x 10$^{16}$ cm, one to two orders of magnitudes larger than the estimated blackbody radii (R$_{rm BB}$) of the same TDEs and we discuss the possible origin of this surprisingly large discrepancy. We also report time lags for the peak luminosity of He I $lambda$5876 line; smaller than the ones of H$alpha$ for H TDEs and similar or larger for N III Bowen TDEs. We report that N III Bowen TDEs have lower H$alpha$ velocity widths compared to the rest of the TDEs in our sample and we also find that a strong X-ray to optical ratio might imply weakening of the line widths. Furthermore, we study the evolution of line luminosities and ratios with respect to their radii (R$_{rm BB}$) and temperatures (T$_{rm BB}$). We find a linear relationship between H$alpha$ luminosity and the R$_{rm BB}$ and potentially an inverse power-law relation with T$_{rm BB}$ leading to weaker H$alpha$ emission for T$_{rm BB}$ $geq$ 25000 K. The He II/He I ratio becomes large at the same temperatures possibly pointing to an ionization effect. The He II/H$alpha$ ratio becomes larger as the photospheric radius recedes, implying a stratified photosphere where Helium lies deeper than Hydrogen. We suggest that the large diversity of the spectroscopic features seen in TDEs along with their X-ray properties, can potentially be attributed to viewing angle effects.
The concept of stars being tidally ripped apart and consumed by a massive black hole (MBH) lurking in the center of a galaxy first captivated theorists in the late 1970s. The observational evidence for these rare but illuminating phenomena for probin
Numerical simulations have historically played a major role in understanding the hydrodynamics of the tidal disruption process. Given the complexity of the geometry of the system, the challenges posed by the problem have indeed stimulated much work o
The discovery of jets from tidal disruption events (TDEs) rejuvenated the old field of relativistic jets powered by accretion onto supermassive black holes. In this Chapter, we first review the extensive multi-wavelength observations of jetted TDEs.
Tidal disruption events are an excellent probe for supermassive black holes in distant inactive galaxies because they show bright multi-wavelength flares lasting several months to years. AT2019dsg presents the first potential association with neutrino emission from such an explosive event.
The existence of optical-ultraviolet Tidal Disruption Events (TDEs) could be considered surprising because their electromagnetic output was originally predicted to be dominated by X-ray emission from an accretion disk. Yet over the last decade, the g